Spaceflight Now Home

Expedition 10

Mission preview story

Launch-to-docking timeline

Russian Soyuz rocket

Soyuz TMA capsule

Commander Chiao

Flight engineer Sharipov

Taxi cosmonaut Shargin

Spaceflight Now +

Premium video content for our Spaceflight Now Plus subscribers.

Expedition 10 preview
International Space Station officials at Johnson Space Center provide a detailed preview of the Expedition 10 mission during this pre-launch press conference. (19min 15sec file)
 Play video

Expedition 9 recap
A review of the soon-to-be completed Expedition 9 mission aboard the International Space Station is presented by mission managers at Johnson Space Center. (32min 38sec file)
 Play video

Checking their ride
Expedition 10 commander Leroy Chiao, flight engineer Salizhan Sharipov and Russian taxi cosmonaut Yuri Shargin climb aboard their Soyuz capsule for a fit check in advance of launch to the International Space Station. (1min 45sec file)
 Play video

Meet next station crew
The three men to launch aboard the next Soyuz spacecraft bound for the International Space Station -- Expedition 10 commander Leroy Chiao, flight engineer Salizhan Sharipov and Russian taxi cosmonaut Yuri Shargin -- hold a pre-flight news conference near Moscow on Sept. 23. (43min 05sec file)
 Play video

Become a subscriber
More video


Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.

Russian Soyuz TMA spacecraft
Posted: October 11, 2004

An illustration of the Soyuz-TMA spacecraft. Credit: NASA
The Soyuz-TMA spacecraft is designed to serve as the International Space Station's crew return vehicle, acting as a lifeboat in the unlikely event an emergency would require the crew to leave the station. A new Soyuz capsule is normally delivered to the station by a Soyuz crew every six months, replacing an older Soyuz capsule already docked to the ISS.

The Soyuz spacecraft is launched to the space station from the Baikonur Cosmodrome in Kazakhstan aboard a Soyuz rocket. It consists of an Orbital Module, a Descent Module and an Instrumentation/Propulsion Module.

Orbital Module

This portion of the Soyuz spacecraft is used by the crew while on orbit during free-flight. It has a volume of 6.5 cubic meters (230 cubic feet), with a docking mechanism, hatch and rendezvous antennas located at the front end. The docking mechanism is used to dock with the space station and the hatch allows entry into the station. The rendezvous antennas are used by the automated docking system -- a radar-based system -- to maneuver towards the station for docking. There is also a window in the module.

The opposite end of the Orbital Module connects to the Descent Module via a pressurized hatch. Before returning to Earth, the Orbital Module separates from the Descent Module -- after the deorbit maneuver -- and burns up upon re-entry into the atmosphere.

Descent Module

The Descent Module is where the cosmonauts and astronauts sit for launch, re-entry and landing. All the necessary controls and displays of the Soyuz are located here. The module also contains life support supplies and batteries used during descent, as well as the primary and backup parachutes and landing rockets. It also contains custom-fitted seat liners for each crewmember's couch/seat, which are individually molded to fit each person's body -- this ensures a tight, comfortable fit when the module lands on the Earth. When crewmembers are brought to the station aboard the space shuttle, their seat liners are brought with them and transferred to the existing Soyuz spacecraft as part of crew handover activities.

The module has a periscope, which allows the crew to view the docking target on the station or the Earth below. The eight hydrogen peroxide thrusters located on the module are used to control the spacecraft's orientation, or attitude, during the descent until parachute deployment. It also has a guidance, navigation and control system to maneuver the vehicle during the descent phase of the mission.

This module weighs 2,900 kilograms (6,393 pounds), with a habitable volume of 4 cubic meters (141 cubic feet). Approximately 50 kilograms (110 pounds) of payload can be returned to Earth in this module and up to 150 kilograms (331 pounds) if only two crewmembers are present. The Descent Module is the only portion of the Soyuz that survives the return to Earth.

Instrumentation/Propulsion Module

This module contains three compartments: Intermediate, Instrumentation and Propulsion. The intermediate compartment is where the module connects to the Descent Module. It also contains oxygen storage tanks and the attitude control thrusters, as well as electronics, communications and control equipment. The primary guidance, navigation, control and computer systems of the Soyuz are in the instrumentation compartment, which is a sealed container filled with circulating nitrogen gas to cool the avionics equipment. The propulsion compartment contains the primary thermal control system and the Soyuz radiator, which has a cooling area of 8 square meters (86 square feet).

The propulsion system, batteries, solar arrays, radiator and structural connection to the Soyuz launch rocket are located in this compartment. The propulsion compartment contains the system that is used to perform any maneuvers while in orbit, including rendezvous and docking with the space station and the deorbit burns necessary to return to Earth. The propellants are nitrogen tetroxide and unsymmetric-dimethylhydrazine. The main propulsion system and the smaller reaction control system, used for attitude changes while in space, share the same propellant tanks.

The two Soyuz solar arrays are attached to either side of the rear section of the Instrumentation/Propulsion Module and are linked to rechargeable batteries. Like the Orbital Module, the intermediate section of the Instrumentation/Propulsion Module separates from the Descent Module after the final deorbit maneuver and burns up in atmosphere upon re-entry.

TMA Improvements and Testing

The Soyuz TMA spacecraft is a replacement for the Soyuz TM, which was used from 1986 to 2002 to take astronauts and cosmonauts to Mir and then to the International Space Station.

The TMA increases safety, especially in descent and landing. It has smaller and more efficient computers and improved displays. In addition, the Soyuz TMA accommodates individuals as large as 1.9 meters (6 feet, 3 inches tall) and 95 kilograms (209 pounds), compared to 1.8 meters (6 feet) and 85 kilograms (187 pounds) in the earlier TM. Minimum crewmember size for the TMA is 1.5 meters (4 feet, 11 inches) and 50 kilograms (110 pounds), compared to 1.6 meters (5 feet, 4 inches) and 56 kilograms (123 pounds) for the TM.

Two new engines reduce landing speed and forces felt by crewmembers by 15 to 30 percent and a new entry control system and three-axis accelerometer increase landing accuracy. Instrumentation improvements include a color "glass cockpit," which is easier to use and gives the crew more information, with hand controllers that can be secured under an instrument panel. All the new components in the Soyuz TMA can spend up to one year in space.

New components and the entire TMA were rigorously tested on the ground, in hangardrop tests, in airdrop tests and in space before the spacecraft was declared flight-ready. For example, the accelerometer and associated software, as well as modified boosters (incorporated to cope with the TMA's additional mass), were tested on flights of Progress unpiloted supply spacecraft, while the new cooling system was tested on two Soyuz TM flights.

Descent module structural modifications, seats and seat shock absorbers were tested in hangar drop tests. Landing system modifications, including associated software upgrades, were tested in a series of airdrop tests. Additionally, extensive tests of systems and components were conducted on the ground.