Spaceflight Now Home



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

STS-124: In review

The STS-124 crew narrates highlights from its mission that delivered Japan's Kibo lab module to the station.

 Full presentation
 Mission film

Jason 2 launch

A ULA Delta 2 rocket launched the Jason 2 oceanography satellite from Vandenberg Air Force Base on June 20.

 Full Coverage

Jason 2 preview

The joint American and European satellite project called Jason 2 will monitor global seal levels.

 Mission | Science

STS-124 space shuttle mission coverage

Extensive video collection covering shuttle Discovery's mission to deliver the Japanese Kibo science lab to the station is available in the archives.

 Full Coverage

Phoenix lands on Mars

The Phoenix spacecraft arrived at Mars on May 25, safely landing on the northern plains to examine the soil and water ice.

 Full Coverage

STS-82: In review

The second servicing of the Hubble Space Telescope was accomplished in Feb. 1997 when the shuttle astronauts replaced a pair of instruments and other internal equipment on the observatory.

 Play

Become a subscriber
More video



Astronomers able to see disks surrounding black holes
UNIVERSITY OF CALIFORNIA - SANTA BARBARA NEWS RELEASE
Posted: July 23, 2008

SANTA BARBARA, Calif. - For the first time, a team of international researchers has found a way to view the accretion disks surrounding black holes and verify that their true electromagnetic spectra match what astronomers have long predicted they would be. Their work will be published in the July 24 issue of the science journal Nature.


A polarizing filter attached to a telescope suppresses the light emitted by dust particles and ionized gas clouds around the quasar so its true electromagnetic spectrum can be revealed. Credit: Makoto Kishimoto, with cloud image by Schartmann
 
A black hole and its bright accretion disk have been thought to form a quasar, the powerful light source at the center of some distant galaxies. Using a polarizing filter, the research team, which included Robert Antonucci and Omer Blaes, professors of physics at the University of California, Santa Barbara, isolated the light emitted by the accretion disk from that produced by other matter in the vicinity of the black hole.

"This work has greatly strengthened the evidence for the accepted explanation of quasars," said Antonucci.

According to Antonucci, the physical process that astronomers find most appealing to explain a quasar's energy source and light production involves matter falling toward a supermassive black hole and swirling around in a disk as it makes its way to the event horizon - the spherical surface that marks the boundary of the black hole. In the process, friction causes the matter to heat up such that it produces light in all wavelengths of the spectrum, including infrared, visible, and ultraviolet. Finally, the matter falls into the black hole and thereby increases the black hole's mass.

"If that's true, we can predict from the laws of physics what the electromagnetic spectrum of the quasar should be," said Antonucci. But testing the prediction has been impossible until now because astronomers have not been able to distinguish between the light emanating from the accretion disk and that of dust particle and ionized gas clouds in the area of the black hole.

By attaching a polarizing filter to the United Kingdom Infrared Telescope (UKIRT) on Mauna Kea in Hawaii, the research team, led by Makoto Kishimoto, an astronomer with the Max-Plank Institute for Radio Astronomy in Bonn, and a former postdoctoral fellow at UCSB, eliminated the extraneous light and was able to measure the spectrum of the accretion disk. Doing so, they demonstrated that the spectrum matches what previously had been predicted. The researchers also used extensive data gathered from the polarization analyzer of the Very Large Telescope, an observatory in Chile that is operated by the European Space Observatory.

What makes the polarizing filter able to perform its magic is the fact that direct light is not polarized - that is, it has no preference in terms of the directional alignment of its electrical field. The accretion disk emanates direct light, as do the dust particles and ionized gas. However, a small amount of light from the accretion disk, which is the exact light the researchers want to study, reflects off gas located very close to the black hole. This light is polarized.

"So if we plot only polarized light, it's as if the additional light isn't there and we can see the true spectrum of the accretion disk," Antonucci said. "With this knowledge we have a better understanding of how black holes consume matter and expand."

Studying the spectrum of a glowing object such as a quasar provides astronomers with an incredible amount of valuable information about its properties and processes, Antonucci noted. "Our understanding of the physical processes in the disk is still rather poor, but now at least we are confident of the overall picture," he said.