Spaceflight Now Home

Spaceflight Now +

Premium video content for our Spaceflight Now Plus subscribers.

STS-1 anniversary event
This 25th anniversary celebration of the first space shuttle launch took place April 12 at Space Center Houston. Speakers included Johnson Space Center Director Mike Coats, NASA Administrator Mike Griffin, Congressman Tom DeLay, Senator Kay Bailey Hutchison, STS-1 commander John Young and pilot Bob Crippen.

 Dial-up: Part 1 | Part 2
 Broadband: Part 1 | 2

New lunar mission
During this NASA news conference on April 10, agency officials unveil the Lunar Crater Observation and Sensing Satellite, or LCROSS, that will launch piggyback with the Lunar Reconnaissance Orbiter spacecraft in October 2008. LCROSS will use the launch vehicle's spent upper stage to crash into the moon's south pole in an explosive search for water.

 Dial-up | Broadband

LCROSS mission plan
Daniel Andrews, the LCROSS project manager from NASA's Ames Research Center, narrates this animation depicting the mission from launch through impact on the lunar surface.

 Play video

STS-1 crew looks back
In this highly entertaining program, commander John Young and pilot Bob Crippen of the first space shuttle crew tell stories and memories from STS-1. The two respected astronauts visited Kennedy Space Center on April 6 to mark the upcoming 25th anniversary of Columbia's maiden voyage.

 Dial-up | Broadband

STS-41G crew film
The October 1984 flight of space shuttle Challenger featured a diverse set of accomplishments. The Earth Radiation Budget Satellite environmental spacecraft was deployed and a planet-mapping radar was tested. The seven-person crew was led by Bob Crippen and included the first Canadian in space, Marc Garneau, and the first time two women, Sally Ride and Kathryn Sullivan, had flown aboard one flight. Sullivan and Dave Leestma also conducted a spacewalk to demonstrate techniques for refueling satellites. The crew narrates this post-flight film of STS-41G.

 Small | Medium | Large

STS-37 anniversary
On April 5, 1991, space shuttle Atlantis lifted off from Kennedy Space Center carrying the Compton Gamma Ray Observatory -- NASA's second Great Observatory. Launch occurred at 9:23 a.m. from pad 39B.

 Play video

Crew news conference
The combined Expedition 12 and 13 crews, along with visiting Brazilian astronaut Marcos Pontes, hold this in-flight news conference with reporters in Houston, Cape Canaveral and Moscow on April 3. The crews are handing over duties during this week-long handover before Expedition 12 returns to Earth from the space station.

 Dial-up | Broadband

Next station crew
Full coverage of the Expedition 13 crew's launch aboard a Russian Soyuz spacecraft to begin a six-month mission aboard the International Space Station.

 Play video

Become a subscriber
More video

Galaxies are born inside dark matter clumps, Spitzer shows
Posted: April 22, 2006

Try mixing caramel into vanilla ice cream -- you will always end up with globs and swirls of caramel. Scientists are finding that galaxies may distribute themselves in similar ways throughout the universe and in places where there is lots of so-called dark matter.

"Our findings suggest that unseen dark matter -- which emits no light but has mass -- has had a major effect on the formation and evolution of galaxies, and that bright active galaxies are only born within dark matter clumps of a certain size in the young universe," said Cornell University research associate Duncan Farrah, the lead author of a paper on spatial clustering that appeared in the April 10 issue of Astrophysical Journal Letters.

To investigate the spatial distribution of galaxies, Farrah used data that recently became available from the Spitzer Wide-area InfraRed Extragalactic (SWIRE) survey, one of the largest such surveys performed by the Spitzer Space Telescope, which was launched in 2003.

A galaxy is typically made up of hundreds of billions of stars grouped tightly together. But galaxies themselves often group together into what astronomers call "large-scale structures." And, just as galaxies themselves can take on such shapes as ellipticals and spirals, so, too, can the large-scale structures, ranging from galaxy clusters to long filaments of galaxies to large, empty voids.

"You might think that galaxies are just distributed randomly across the sky, like throwing a handful of sand onto the floor," said Farrar. "But the problem is they are not, and this has been a great puzzle."

Farrah is interested in how large-scale structures form. To measure the amount of clustering in the early universe, he looked at light that had traveled for several billion years from extremely distant galaxies. From this he was able to calculate the amount of bunching in candidate galaxy clusters in the early universe.

"We wanted to find the beacons of the first stages of the formation of a galaxy cluster because, at that time, the clusters themselves had not formed yet," said Farrah.

In particular, he was interested in objects that emit strongly in the infrared and are surrounded by dense gas and dust. These objects, known as ultraluminous infrared galaxies (ULIRGs), were thought to be precursors of galaxy clusters. Farrah confirmed this by showing that ULIRGs do, indeed, tend to cluster in their early phases. The ability to pinpoint the locations of nascent galaxy clusters will enable researchers to investigate early cluster formations and when they occurred.

Farrah's finding that distant ULIRGs are linked with large clumps of dark matter was surprising for another reason. As its name suggests, dark matter doesn't emit light so no conventional telescope can see it. However, because dark matter has mass, its existence can be inferred by the way stars are drawn to regions where this mysterious mass is concentrated.

Unexpectedly, Farrah found that ULIRGs at different points in the history of the universe coincide with clumps of dark matter haloes of very similar masses. This observation suggests that a minimum amount of dark matter is necessary for galaxies to form and to coalesce into clusters. Farrah believes his study also provides valuable insights into understanding how dark matter helped mold the evolution of the universe.

Carol Lonsdale of NASA's Jet Propulsion Laboratory, which manages the Spitzer Space Telescope, is the principal investigator for the SWIRE project.