Spaceflight Now Home

Spaceflight Now +

Premium video content for our Spaceflight Now Plus subscribers.

STS-4: Last test flight
The developmental test flights of the space shuttle concluded with Columbia's STS-4 mission. Commander Ken Mattingly and pilot Henry Hartsfield spent a week in space examining orbiter systems and running science experiments. The 1982 flight ended on the Fourth of July with President Reagan at the landing site to witness Columbia's return and the new orbiter Challenger leaving for Kennedy Space Center. Watch this STS-4 post-flight crew presentation film.

 Small | Medium | Large

STS-3: Unique landing
Columbia's STS-3 mission is best remembered in the history books for its conclusion -- the first and so far only landing at the picturesque Northrup Strip at White Sands, New Mexico. In this post-flight presentation film, the crew describes the highlights of the March 1982 mission and shows some of the fun they had in orbit. The commander also tells how he accidentally "popped a wheelie" before bringing the nose gear down to the runway surface.

 Small | Medium | Large

STS-2: Columbia is a reusable spaceship
Seven months after the successful maiden voyage of space shuttle Columbia, astronauts Joe Engle and Richard Truly took the orbiter back into space on mission STS-2. The November 12, 1981 launch demonstrated that the space shuttle was the world's first reusable manned spacecraft. Although their mission would be cut short, Engle and Truly performed the first tests of the shuttle's Canadian-made robotic arm. The crew tells the story of the mission in this post-flight presentation.

 Small | Medium | Large

STS-1: America's first space shuttle mission
The space shuttle era was born on April 12, 1981 when astronauts John Young and Bob Crippen rode Columbia into Earth orbit from Kennedy Space Center's launch pad 39A. The two-day flight proved the shuttle could get into space as a rocket and return safely with a runway landing. Following the voyage of STS-1, the two astronauts narrated this film of the mission highlights and told some of their personal thoughts on the flight.

 Small | Medium | Large

Suit tossed overboard
The Expedition 12 crew tosses overboard an old Russian spacesuit loaded with ham radio gear during a spacewalk outside the International Space Station. The eery view of the lifeless suit tumbling into the darkness of space was captured by station cameras.

 Play video

Become a subscriber
More video

Astronomers find new kind of cosmic object
Posted: February 15, 2006

Illustration credit: Russell Kightley Media
An team of astronomers from the UK, USA, Australia, Italy and Canada using the CSIRO Parkes radio telescope in eastern Australia has found a new kind of cosmic object - small, compressed 'neutron stars' that show no activity most of the time but once in a while spit out a single burst of radio waves. The discovery is published in this week's issue of the journal Nature.

The new objects - dubbed Rotating Radio Transients or RRATs - are likely to be related to conventional radio pulsars (small stars that emit regular pulses of radio waves, up to hundreds of times a second). But the new objects probably far outnumber their old cousins, the scientists say.

Eleven RRATs have been found, first detected by the Parkes Multibeam Pulsar Survey and then observed again several times. Their isolated bursts last for between two and 30 milliseconds. In between, for times ranging from four minutes to three hours, they are silent.

"These things were very difficult to pin down," says CSIRO's Dr Dick Manchester, a member of the research team and a veteran pulsar hunter. "For each object we've been detecting radio emission for less than one second a day. And because these are single bursts, we've had to take great care to distinguish them from terrestrial radio interference."

By analysing the burst arrival times, the astronomers have found that 10 of the 11 sources have underlying periods of between 0.4 seconds and seven seconds. It is this that suggests that they are rotating neutron stars.

Because RRATs are 'silent' most of the time, the chance of being able to detect one is low. Many more must lurk unseen in our Galaxy, the astronomers argue - perhaps a few hundred thousand. The number of 'normal' radio pulsars in our Galaxy is estimated to be about 100 000.

Unlike some other kinds of stars that show periodic eruptions, the RRATs show no evidence for being in binary systems (that is, each orbiting another star).

A handful of 'normal' pulsars produce the occasional 'giant' pulse, along with their usual train of regular, smaller pulses. The RRATs appear to differ from these pulsars by having magnetic field strengths in the emission region about a hundred thousand times weaker.