Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

"Ride of Your Life"
As the title aptly describes, this movie straps you aboard the flight deck for the thunderous liftoff, the re-entry and safe landing of a space shuttle mission. The movie features the rarely heard intercom communications between the crewmembers, including pilot Jim Halsell assisting commander Bob Cabana during the landing.

 Play video

Message from Apollo 8
On Christmas Eve in 1968, a live television broadcast from Apollo 8 offered this message of hope to the people of Earth. The famous transmission occurred as the astronauts orbited the Moon.

 Play video

ISS receives supply ship
The International Space Station receives its 20th Russian Progress cargo ship, bringing the outpost's two-man Expedition 12 crew a delivery of fresh food, clothes, equipment and special holiday gifts just in time for Christmas.

 Short | Full length

Rendezvous with ISS
This movie features highlights of the December 23 rendezvous between the Russian Progress 20P vessel and the International Space Station. The footage comes from a camera mounted on the supply ship's nose.

 Play video

Stardust return preview
NASA's Stardust spacecraft encountered Comet Wild 2 two years ago, gathering samples of cometary dust for return to Earth. In this Dec. 21 news conference, mission officials and scientists detail the probe's homecoming and planned landing in Utah scheduled for January 15, 2006.

 Dial-up | Broadband

Science of New Horizons
The first robotic space mission to visit the distant planet Pluto and frozen objects in the Kuiper Belt is explained by the project's managers and scientists in this NASA news conference from the agency's Washington headquarters on Dec. 19.

 Dial-up | Broadband

Shuttle program update
Bill Gerstenmaier, NASA associate administrator for space operations, discusses the latest space shuttle program news, including the decision to remove the PAL foam ramp from future external fuel tanks, during this December 15 teleconference with reporters.

 QuickTime | For iPod

Remembering Gemini 6
The Gemini 6 mission launched from the Cape at 8:37 a.m. December 15, 1965 to rendezvous with the orbiting Gemini 7 spacecraft. The rendezvous occurred and Gemini 6 safely returned to Earth.

 Play video

New views of icy moons
NASA's Cassini spacecraft orbiting Saturn is wrapping up a phenomenally successful year of observing the mysterious icy moons, including Enceladus, Dione, Rhea, Hyperion and Iapetus.

 Play video

First ISS spacewalkers
Mission Control remembers the spacewalking efforts by astronaut Jerry Ross and Jim Newman from this week in 1998. The duo worked to connect the first two pieces of the International Space Station -- the Russian-made Zarya control module and the U.S Unity node.

 Play video

Hubble Space Telescope
Scientists marvel at the achievements made by the orbiting Hubble Space Telescope in this produced movie looking at the crown jewel observatory that has served as our window on the universe.

 Play video

Become a subscriber
More video



Galaxy's neighboring spiral arm closer than thought
HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS NEWS RELEASE
Posted: December 27, 2005

The Perseus spiral arm - the nearest spiral arm in the Milky Way outside the Sun's orbit - lies only half as far from Earth as some previous studies had suggested. An international team of astronomers measured a highly accurate distance to the Perseus arm for the first time using a globe-spanning system of radio dishes known as the Very Long Baseline Array (VLBA), which offers the sharpest vision of any telescope in existence. Additional VLBA measurements will help astronomers to determine the true structure of the Milky Way.


Mark Reid and his colleagues measured the distance to the Perseus spiral arm and found it to be closer than believed, only 6400 light-years away. Credit Y. Xu et al.
 
"We know less about the structure of our own galaxy than we do about many nearby galaxies like Andromeda," said Smithsonian astronomer and team leader Mark Reid (Harvard-Smithsonian Center for Astrophysics). "We literally can't see the forest for the trees because we are embedded inside our own galaxy, and interstellar dust blocks our view."

The team's results were published in the December 8, 2005 online issue of Science Express and will appear in print in the January 6, 2006 issue of Science. Reid also will speak about the findings on January 9 at the 207th meeting of the American Astronomical Society in Washington, DC.

Previous estimates of the distance to the Perseus arm varied by a factor of two. Studies based on the motions of stars yielded a distance of more than 14,000 light-years, while observations comparing the apparent brightness of massive, young stars with estimates of their intrinsic brightness yielded a distance of only about 7,200 light-years. The new VLBA measurements confirm with an accuracy of 2 percent that the Perseus spiral arm is located about 6,400 light-years from the Earth.

"Our neighbors are closer than we thought," stated first author Ye Xu (Shanghai Astronomical Observatory).

Obtaining accurate distances in astronomy is a difficult challenge. The most reliable method for measuring astronomical distances is called trigonometric parallax, a technique similar to the triangulation used by land surveyors. A trigonometric parallax is determined by observing the change in position of a star relative to a very distant, essentially fixed object like a quasar, as the Earth moves in its orbit around the Sun. Just as a finger held at arm's length appears to shift against the far wall when viewed with one eye or the other, a nearby object will appear to shift position relative to a more distant one. Mathematical calculations then yield the distance to the closer object. The parallax method is powerful but requires exceptional accuracy.

"I have spent more than a decade developing the calibration techniques we needed to obtain this result," said Reid.

The team achieved an accuracy of 10 micro-arcseconds, which is a factor of 100 better than previous methods. That resolution is equivalent to looking from the Earth to a person standing on the Moon's surface and telling whether that person is holding a flashlight in their right or left hand. The VLBA is the only telescope able to provide such high resolution.

Reid and his colleagues used the VLBA to examine the region near a newly formed star in the Perseus arm called W3OH. They gathered radiation from bright, compact radio sources known as methanol masers. (Masers amplify, or strengthen, radio-wave emission the same way that lasers amplify light emission. Masers can form naturally in outer space.)

With a distance in hand, the team was able to determine the motion of W3OH in three-dimensional space. They found that W3OH is orbiting the galactic center more slowly than the galaxy spins, and is "falling" toward the center of the Milky Way. Such peculiar motions can be studied to determine the distribution of mass in the Milky Way.

The team has been awarded additional VLBA observing time to measure other regions of the galaxy. Over time, such studies will help map the spiral structure of the Milky Way and determine the distribution of unseen dark matter believed to surround it.

The VLBA is part of the National Radio Astronomy Observatory (NRAO), a research facility of the National Science Foundation (NSF). Dedicated in 1993, the VLBA consists of 10, 25-meter-diameter dish antennas spread from Hawaii to St. Croix in the Caribbean. The antennas all work together as a single telescopic system roughly the size of the Earth. The NRAO is operated for the NSF under a cooperative agreement by Associated Universities, Inc.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.