Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Hubble Space Telescope
Scientists marvel at the achievements made by the orbiting Hubble Space Telescope in this produced movie looking at the crown jewel observatory that has served as our window on the universe.

 Play video

An American in orbit
Mercury astronaut John Glenn becomes the first American to orbit the Earth on February 20, 1962, when he is launched aboard Friendship 7.

 Play video

Space Thanksgiving
International Space Station commander Bill McArthur and flight engineer Valery Tokarev mark the Thanksgiving holiday in orbit during this downlinked message.

 Play video

Soyuz on the move
Expedition 12 Soyuz commander Valery Tokarev and station commander Bill McArthur temporarily leave the International Space Station. They undocked their Soyuz capsule from the Pirs module and then redocked the craft to the nearby Zarya module. The move clears Pirs for use as the airlock for an upcoming Russian-based spacewalk.

 Play video

Pluto New Horizons
Check out NASA's Pluto-bound New Horizons spacecraft undergoing thermal blanket installation inside the cleanroom at Kennedy Space Center's Payload Hazardous Servicing Facility in preparation for launch in January from the Cape.

 Play video

Mountains of creation
A new image from NASA's Spitzer Space Telescope reveals billowing mountains of dust ablaze with the fires of stellar youth. The majestic infrared view from Spitzer resembles the iconic "Pillars of Creation" picture taken of the Eagle Nebula in visible light by NASA's Hubble Space Telescope.

 Play video

Space history: STS-51A
This week marks the anniversary of arguably the most daring and complex space shuttle mission. The astronauts successfully launched two satellites and then recovered two others during extraordinary spacewalks by astronauts using jet-propelled backpacks and pure muscle power.

 Play video

Space station EVA
Commander Bill McArthur and flight engineer Valery Tokarev conduct a 5 1/2-hour spacewalk outside the International Space Station, installing a TV camera, doing repair chores and jettisoning a failed science probe.

 Play video

The Earth from space
Return to flight space shuttle commander Eileen Collins narrates an interesting slide show featuring some favorite photographs of Earth taken during her previous shuttle missions.

 Play video

Griffin testifies
NASA Administrator Mike Griffin goes before the U.S. House of Representative's Science Committee to provide an update on the moon-Mars exploration program, the future of the space shuttle and space station, possible servicing of Hubble, cost overruns on the James Webb Space Telescope and the agency's aeronautics research.

 Play video

Become a subscriber
More video



Titan gives clues to Earth's early history
UNIVERSITY OF MICHIGAN NEWS RELEASE
Posted: November 30, 2005

Readings from the Huygens probe of the surface and atmosphere around Saturn's largest moon, Titan, give researchers a peek back through time to when and how Earth's atmosphere formed, and how our primitive planet looked before life took a foothold here.

The Huygens space probe, launched from the Cassini spacecraft Dec. 25, 2004, took the first direct measurements of Titan's atmosphere and surface as it parachuted onto the moon on Jan. 14. The instrument that made the measurements, called Gas Chromatograph Mass Spectrometer (GCMS), was built by the Goddard Space Flight Center and the University of Michigan.

The new findings are outlined in the paper, "The Abundances of Constituents of Titan's Atmosphere From the GCMS Instrument on the Huygens Probe," available in the on-line edition of the journal Nature.

The spectrometer recorded several new and important findings, said Sushil Atreya, U-M professor of atmospheric, oceanic, and space sciences and a member of the team who, together with George Carignan, AOSS Research Scientist Emeritus, helped design the spectrometer, and interpret the readings. Atreya also directs the Planetary Science Laboratory. The first, and perhaps most significant discovery, is that the spectrometer did not detect the primordial noble gases. Their detection would have signaled that the atmosphere on Titan today is the same as acquired at the time of Titan's formation. Instead, nitrogen on Titan formed from ammonia, which is believed to be the same way nitrogen formed on Earth.

Spaceflight Now Plus
Additional coverage for subscribers:
VIDEO: SCIENTISTS HOLD HUYGENS RESULTS NEWS BRIEFING PLAY
SUBSCRIBE NOW


"Titan and Earth have a lot of similarities from the very beginning," Atreya said. "The most important aspect of Titan is that it has an Earth-like atmosphere. No other body in the solar system outside Earth has a massive nitrogen atmosphere. It's like a window into the past of the Earth. It tells us the conditions the way they were when Earth began to form, the way the atmosphere came about."

The spectrometer also discovered that methane is the second most abundant gas on Titan, comprising five percent of the atmospheric volume. Surprisingly, methane was found to play a similar role on Titan as does water in the hydrological cycle on Earth. The spectrometer measurements indicated presence of small amounts of liquid methane mixed in with other surface material; this methane evaporates into the atmosphere and forms clouds (as does water on Earth) and eventually rains back down and completes the cycle.

"It's telling us that Titan's meteorology is somewhat like the meteorology on Earth, except Titan's meteorology is controlled by methane and Earth's is controlled by water," Atreya said.

Another important aspect of Titan is that complex hydrocarbons form in the presence of methane and nitrogen (the two main components of Titan's atmosphere) and the energy from the sun. Reactions can occur here that create complex organic molecules that may be the precursors to life, Atreya said. The spectrometer data provide no indication of life on Titan.

In the cold environment of Titan, the complex organic molecules condense to form the haze that hovers from approximately 16 kilometers to perhaps as high as 700 km above Titan's surface, and obscures the moon's surface from view. In another paper, also available in this issue of Nature, preliminary results on this haze collected by the Aerosol Collector Pyrolyzer (ACP) instrument during Huygen's descent through Titan's atmosphere and analyzed by the GCMS are presented. "Although it is evident the haze is complex, much work is still required to nail its composition", said Atreya, who is a member of the ACP experiment team also.

The spectrometer also recorded evidence that Titan is geologically active, Atreya said, and it's likely that water-rock reactions occurring within Titan's interior are replenishing the methane destroyed by sunlight in Titan's upper atmosphere.

The Cassini-Huygens mission is a joint project of NASA, the European Space Agency and the Italian Space Agency.

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at $135 million for 2004. Michigan Engineering has 11 departments and two NSF Engineering Research Centers. Within those departments and centers, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is seeking to raise $110 million for capital building projects and program support in these areas to further research discovery. Michigan Engineering's goal is to advance academic scholarship and market cutting edge research to improve public health and well-being.