Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Hubble Space Telescope
Scientists marvel at the achievements made by the orbiting Hubble Space Telescope in this produced movie looking at the crown jewel observatory that has served as our window on the universe.

 Play video

An American in orbit
Mercury astronaut John Glenn becomes the first American to orbit the Earth on February 20, 1962, when he is launched aboard Friendship 7.

 Play video

Space Thanksgiving
International Space Station commander Bill McArthur and flight engineer Valery Tokarev mark the Thanksgiving holiday in orbit during this downlinked message.

 Play video

Soyuz on the move
Expedition 12 Soyuz commander Valery Tokarev and station commander Bill McArthur temporarily leave the International Space Station. They undocked their Soyuz capsule from the Pirs module and then redocked the craft to the nearby Zarya module. The move clears Pirs for use as the airlock for an upcoming Russian-based spacewalk.

 Play video

Pluto New Horizons
Check out NASA's Pluto-bound New Horizons spacecraft undergoing thermal blanket installation inside the cleanroom at Kennedy Space Center's Payload Hazardous Servicing Facility in preparation for launch in January from the Cape.

 Play video

Mountains of creation
A new image from NASA's Spitzer Space Telescope reveals billowing mountains of dust ablaze with the fires of stellar youth. The majestic infrared view from Spitzer resembles the iconic "Pillars of Creation" picture taken of the Eagle Nebula in visible light by NASA's Hubble Space Telescope.

 Play video

Space history: STS-51A
This week marks the anniversary of arguably the most daring and complex space shuttle mission. The astronauts successfully launched two satellites and then recovered two others during extraordinary spacewalks by astronauts using jet-propelled backpacks and pure muscle power.

 Play video

Space station EVA
Commander Bill McArthur and flight engineer Valery Tokarev conduct a 5 1/2-hour spacewalk outside the International Space Station, installing a TV camera, doing repair chores and jettisoning a failed science probe.

 Play video

The Earth from space
Return to flight space shuttle commander Eileen Collins narrates an interesting slide show featuring some favorite photographs of Earth taken during her previous shuttle missions.

 Play video

Griffin testifies
NASA Administrator Mike Griffin goes before the U.S. House of Representative's Science Committee to provide an update on the moon-Mars exploration program, the future of the space shuttle and space station, possible servicing of Hubble, cost overruns on the James Webb Space Telescope and the agency's aeronautics research.

 Play video

Become a subscriber
More video



Titan's methane likely comes from inside, not surface
NASA-GODDARD NEWS RELEASE
Posted: November 30, 2005

The methane giving an orange hue to Saturn's giant moon Titan likely comes from geologic processes in its interior according to measurements from the Gas Chromatograph Mass Spectrometer (GCMS), a Goddard Space Flight Center instrument aboard the European Space Agency's Huygens Probe. The GCMS, which descended with five other instruments on the probe through the moon's thick atmosphere on Jan. 14, 2005, also found evidence of liquid methane in the surface material.


The artist's concept shows the European Space Agency's Huygens probe descent sequence. The animation shows the Huygens probe's entry, descent and landing, with the descent imager/spectral radiometer lamp turned on at the end. Credit: NASA/JPL/ESA
 
Methane, a molecule consisting of four hydrogen atoms bound to a carbon atom, is the primary component of natural gas on Earth. It can be produced by life, by degradation of organic debris or by geologic processes like volcanoes.

The origin of methane in Titan's atmosphere is a mystery because it gets broken down by sunlight and particle radiation from space in the upper atmosphere. If surface lakes and pools were the only source, all of Titan's methane would be lost by this mechanism in less than a hundred million years, a short time for a moon that's been around since the formation of the solar system 4.5 billion years ago. Components of the methane molecules react with each other and atmospheric nitrogen. As they descend, they form larger and heavier molecules that comprise the orange haze that blankets the moon. Because Titan is very cold (292 degrees below zero F, or minus 180 degrees Celsius) these heavy compounds condense and rain out on the surface.

"We have determined that Titan's methane is not of biological origin, so it must be replenished by geologic processes on Titan, perhaps venting from a supply in the interior that could have been trapped there as the moon formed," said Dr. Hasso Niemann of Goddard, principal investigator for the GCMS and lead author of a paper on this research to appear in Nature on Dec. 8.

Spaceflight Now Plus
Additional coverage for subscribers:
VIDEO: SCIENTISTS HOLD HUYGENS RESULTS NEWS BRIEFING PLAY
SUBSCRIBE NOW


Titan is believed to be too cold for life. Nevertheless, Niemann's team of scientists used Goddard's GCMS instrument to rule out a biological source for Titan's methane. The GCMS instrument identifies different atmospheric constituents by their mass. Molecules and atoms are given an electric charge (ionized) and are separated by their mass as they traverse an electric field in a quadruple mass spectrometer.

The carbon in methane molecules comes in different varieties, or isotopes - carbon-12 (12C) and carbon-13 (13C). Each 13C atom has an extra neutron in its nucleus, making them slightly heavier than 12C atoms, so the GCMS can distinguish between methane with 12C and methane with 13C.

Living organisms have a preference for carbon-12. As a result, carbon-containing molecules, such as methane, that are associated with life on Earth get enriched in 12C. The ratio of 12C to 13C is a marker or signature of life. However, the team did not see 12C enrichment in the methane on Titan.

Also, when the heated inlet of the GCMS came in contact with the surface, it vaporized some of the surface material. After impact, the GCMS detected a 40 percent increase in the number of methane molecules measured, and this level remained for about 50 minutes after impact. This long-lived burst is best explained by the presence of liquid methane mixed with the surface material, according to the team.

Other Huygens observations, such as pictures from the Descent Imager and Spectral Radiometer instrument, show features that look remarkably like dry riverbeds. Scientists have theorized that at Titan's cold temperatures, liquid methane plays the role of water on Earth, while deeply frozen water substitutes for rock. On Titan, liquid methane could cut channels in water ice the same way water carves canyons through rock. The presence of liquid methane on Titan's surface supports this scenario.

The Cassini-Huygens mission is a cooperative project of NASA, ESA and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington, D.C.