Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Hubble Space Telescope
Scientists marvel at the achievements made by the orbiting Hubble Space Telescope in this produced movie looking at the crown jewel observatory that has served as our window on the universe.

 Play video

An American in orbit
Mercury astronaut John Glenn becomes the first American to orbit the Earth on February 20, 1962, when he is launched aboard Friendship 7.

 Play video

Space Thanksgiving
International Space Station commander Bill McArthur and flight engineer Valery Tokarev mark the Thanksgiving holiday in orbit during this downlinked message.

 Play video

Soyuz on the move
Expedition 12 Soyuz commander Valery Tokarev and station commander Bill McArthur temporarily leave the International Space Station. They undocked their Soyuz capsule from the Pirs module and then redocked the craft to the nearby Zarya module. The move clears Pirs for use as the airlock for an upcoming Russian-based spacewalk.

 Play video

Pluto New Horizons
Check out NASA's Pluto-bound New Horizons spacecraft undergoing thermal blanket installation inside the cleanroom at Kennedy Space Center's Payload Hazardous Servicing Facility in preparation for launch in January from the Cape.

 Play video

Mountains of creation
A new image from NASA's Spitzer Space Telescope reveals billowing mountains of dust ablaze with the fires of stellar youth. The majestic infrared view from Spitzer resembles the iconic "Pillars of Creation" picture taken of the Eagle Nebula in visible light by NASA's Hubble Space Telescope.

 Play video

Space history: STS-51A
This week marks the anniversary of arguably the most daring and complex space shuttle mission. The astronauts successfully launched two satellites and then recovered two others during extraordinary spacewalks by astronauts using jet-propelled backpacks and pure muscle power.

 Play video

Space station EVA
Commander Bill McArthur and flight engineer Valery Tokarev conduct a 5 1/2-hour spacewalk outside the International Space Station, installing a TV camera, doing repair chores and jettisoning a failed science probe.

 Play video

The Earth from space
Return to flight space shuttle commander Eileen Collins narrates an interesting slide show featuring some favorite photographs of Earth taken during her previous shuttle missions.

 Play video

Griffin testifies
NASA Administrator Mike Griffin goes before the U.S. House of Representative's Science Committee to provide an update on the moon-Mars exploration program, the future of the space shuttle and space station, possible servicing of Hubble, cost overruns on the James Webb Space Telescope and the agency's aeronautics research.

 Play video

Become a subscriber
More video



Huygens probe's Titan landing site determined
UNIVERSITY OF ARIZONA NEWS RELEASE
Posted: November 30, 2005

Cassini/Huygens scientists have discovered exactly where on Saturn's largest moon, Titan, the European Space Agency's (ESA) Huygens probe landed last January. Knowing the landing location will allow them to directly compare data from Huygens with remote sensing data from NASA's Cassini orbiter.


This composite image shows a mosaic of the European Space Agency's Huygens probe landing site, as seen by the descent imager/spectral radiometer on the Huygens probe. The mosaic is overlaid on a Cassini orbiter radar image. The radar image was taken on an Oct. 28, 2005, flyby. The landing site, marked by the red "X", is located at 192.3 degrees west, 10.3 degrees south (southern hemisphere of Titan). Credit: ESA/NASA/JPL/University of Arizona/USGS
 
"Based on a truly project-wide collaboration among a number of members of the extended Cassini/Huygens community, we feel we are finally in a position to announce a definitive correlation between a section of radar data taken on the T8 (the Oct. 28, 2005 Titan flyby) and a DISR high-altitude mosaic," Bashar Rizk of the University of Arizona Lunar and Planetary Laboratory (LPL) and Steven Wall of NASA's Jet Propulsion Laboratory told project scientists earlier this month.

"DISR," or the Descent Imager/Spectral Radiometer, was the eyes for the Huygens probe on its journey to Titan's surface on Jan. 14, 2005. The Huygens landing was the most distant touchdown ever made by a human-built science probe. DISR took photographs during the probe's descent, and those photos show that Titan is more like the Earth than any other world seen yet. UA's Martin Tomasko, an LPL research professor, leads the international DISR team.

Expressed in Titan longitude and latitude, the Huygens probe landed within about 5 kilometers (1.4 miles) of 192.4 degrees west longitude (or 167.6 degrees east longitude) and minus 10.2 degrees south latitude, Rizk and Wall said. That's a mere 7 kilometers (4 miles) away from where Cassini/Huygens scientists predicted the probe would land, they noted.

Locating the landing site required the joint effort of members of the radar, imaging, visual and infrared mapping spectrometer and DISR teams, as well as the essential participation of Larry Soderblom and Randy Kirk of U.S. Geological Survey astrogeology division in Flagstaff, Ariz., Rizk and Wall said.

Spaceflight Now Plus
Additional coverage for subscribers:
VIDEO: SCIENTISTS HOLD HUYGENS RESULTS NEWS BRIEFING PLAY
SUBSCRIBE NOW


The DISR team scientists analyzed landform features and albedo (brightness) patterns in both the radar and optical (DISR) images by making overlays to locate boundaries and match landform orientations and shapes. It took considerable skill, patience and some luck.

"It's important that we know from an orbital perspective what kind of terrain the Huygens probe landed in," Rizk said. "It allows us to connect what Huygens found in detail about a small patch of Titan's surface to what the orbiter is accumulating now. We had a pretty good notion of what the landing site was before, but connecting it with the radar data allowed us touse the magnificent, absolute knowledge of the location transferred through the Cassini orbiter."

Last week Rizk made a minute-long animation, Titan descent movie, from images taken during the Huygens probe's two-and-one-half hour alien-world plunge. The animation is online at the DISR Website. Rizk created the animation from Cassini imaging, radar, and visual and infrared mapping spectrometer data as well as DISR data. It traces the actual descent profile that the probe took as it swung and spun east down to Titan's surface.

LPL Professor Jonathan I. Lunine presented the movie earlier today at an ESA press conference in Paris. "The combination of DISR and Cassini remote sensing data provide a tantalizing hint that the action of liquids eroding and shaping the landscape near the landing site is repeated elsewhere in the much larger region covered by the orbiter data," Lunine said.

The new Huygens descent animation starts at an altitude of 300 km (about 186 miles) and moves eastward along the trajectory that the Huygens probe traveled on its journey to Titan's surface. Data from the imaging system, radar and the visual and infrared mapping spectrometer on the Cassini orbiter are displayed in quick succession, followed by DISR mosaics from increasingly lower altitudes. The surface color is about what a human observer riding on the probe would see if it were possible to see the surface through Titan's atmospheric haze. The longitude and latitude grid lines are separated by 2 degrees. Near the end of its descent, the probe reversed direction, setting almost straight down until, finally, it landed, facing south on a dry lakebed strewn with ice cobbles.

Overall, the entire set of DISR observations from 150 kilometers (93 miles) high in Titan's atmosphere through landing outlines the major role methane plays in shaping Titan's surface and controlling its meteorology, said Bruno Bezard of Observatoire de Paris, France, a co-investigator on DISR, at the ESA press conference.

DISR was enveloped in thick haze as soon as it began taking data at 150 kilometers (93 miles) altitude, Bezard said, and the haze reaches undiminished all the way to the surface. The haze was so thick that DISR's three different cameras began discerning surface features only at about 55 kilometers (34 miles) altitude.

DISR scientists used the different camera views to reconstruct the probe's descent trajectory and measure wind velocities. At 50 kilometers high (31 miles), 90 kph (60 mph) winds swept the probe eastward. But at about 7 kilometers altitude (4 miles), windspeed dropped to less than 3kph (less than 2 mph) and the winds changed direction. This may be a convective region where local winds disconnect from Titan's main jet-streams, the scientists said.

At 700 meters altitude (about 1/2 mile), DISR turned on a landing lamp so spectrometers could analyze light reflected from the near-surface atmosphere and the surface itself. The spectrometers measured five percent methane in Titan's mostly nitrogen atmosphere at 20 meters (66 feet) altitude. That's three times more methane than in Titan's stratosphere and confirms that methane is condensing near Titan's surface, DISR scientists concluded.

The team had planned to measure light reflected from Titan's surface to learn just what that surface is made of. The dark, frigid surface would look reddish to the human eye. It reflected no more than 15 percent to 20 percent at infrared (longer-than-visible) light wavelengths. Light reflected from Titan's surface showed there are organic materials (carbon-and-hydrogen containing compounds) and water ice, but also water ice laced with an unknown constituent. Scientists will have to further analyze DISR data and organic materials manufactured in the laboratory to identify the unknown constituent.

But it's the DISR images of Titan's striking landscape that have thrilled millions of people worldwide. When DISR scientists assembled the descent images into panoramic mosaics, they saw bright, high terrain cut by deep channels and flat, darker, lower terrain that resembled a dried lakebed. It is Earth-like desert topography clearly marked by fluid flow.

"Titan's surface is shaped by winds, liquid and tectonic forces as on Earth, but under exotic conditions and involving organic deposits as well as water ice," Lunine noted at the press conference.

There appear to be two types of channel networks. Steeply sloped main drainage channels from 100 to 200 meters wide (about 300 to 650 feet) and 50 to 100 meters deep (about 150 to 300 feet) branch through the bright highlands. They are believed to have been cut by rapidly flowing rivers of liquid methane. A second type are the short, stubby channels that often begin - or end - in dark circular areas. They are thought to be spring-fed channels.

One of DISR's most memorable images is the well-known view from Titan's surface taken after landing. Fifteen-centimeter (six-inch) rounded water-ice cobbles lie scattered over a darker, fine-grained "ice gravel." It's more evidence for powerful erosion by flowing liquid.

The British science journal Nature will publish an issue on Huygens probe results, including an article on DISR results, on Dec. 8.

The Cassini-Huygens mission to Saturn and Titan is a joint mission of NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI). ESA supplied and manages the Huygens probe that descended to Titan's surface Jan. 14, 2005. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate in Washington, D.C. NASA funded the Descent Imager-Spectral Radiometer, which was built by Lockheed Martin.