Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Distant space explosion
Astronomers announce the detection by NASA's Swift satellite of the most distant explosion yet, a gamma-ray burst from the edge of the visible universe, during this media teleconference held Monday, September 12. (54min 01sec file)

 Full coverage

Hill-climbing Mars rover
The Mars Exploration Rover Spirit has reached the summit of Husband Hill, returning a spectacular panorama from the hilltop in the vast Gusev Crater. Scientists held a news conference Sept. 1 to reveal the panorama and give an update on the twin rover mission.

 Full coverage

Planes track Discovery
To gain a new perspective on space shuttle Discovery's ascent and gather additional imagery for the return to flight mission, NASA dispatched a pair of high-flying WB-57 aircraft equipped with sharp video cameras in their noses.

 Full coverage

Rocket booster cams
When space shuttle Discovery launched its two solid-fuel booster rockets were equipped with video cameras, providing dazzling footage of separation from the external fuel tank, their free fall and splashdown in the sea.

 Full coverage

Discovery ferried home
Mounted atop a modified Boeing 747, space shuttle Discovery was ferried across the country from Edwards Air Force Base, California, to Kennedy Space Center, Florida.

 Full coverage

Shuttle tank returned
Shuttle fuel tank ET-119 is loaded onto a barge at Kennedy Space Center for the trip back to Lockheed Martin's Michoud Assembly Facility in New Orleans. The tank will be used in the investigation to determine why foam peeled away from Discovery's tank on STS-114 in July.

 Full coverage

Delta 4 launch delayed
Launch of the GOES-N weather observatory aboard a Boeing Delta 4 rocket is postponed at Cape Canaveral, Florida.

 Full coverage

Mars probe leaves Earth
The Mars Reconnaissance Orbiter lifts off aboard a Lockheed Martin Atlas 5 rocket from Cape Canaveral's Complex 41.

 Full coverage

Launch pad demolition
Explosives topple the abandoned Complex 13 mobile service tower at Cape Canaveral Air Force Station. This video was shot from the blockhouse roof at neighboring Complex 14 where John Glenn was launched in 1962.

 Play video:
   Full view | Close-up

Become a subscriber
More video



Most distant explosion smashes previous record
NASA NEWS RELEASE
Posted: September 12, 2005



 
Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma ray burst (GRB) science. Credit: NASA/GSFC/Chris Meaney
 
Scientists using NASA's Swift satellite and several ground-based telescopes have detected the most distant explosion yet, a gamma-ray burst from the edge of the visible universe.

This powerful burst was detected September 4. It marks the death of a massive star and the birth of a black hole. It comes from an era soon after stars and galaxies first formed, about 500 million to 1 billion years after the Big Bang.

"We designed Swift to look for faint bursts coming from the edge of the Universe," said Swift principal investigator Dr. Neil Gehrels of NASA Goddard Space Flight Center in Greenbelt, Md. "Now we've got one and it's fascinating. For the first time we can learn about individual stars from near the beginning of time. There are surely many more out there," he added.

Only one quasar has been discovered at a greater distance. Quasars are super-massive black holes containing the mass of billions of stars. This burst comes from a lone star. Scientists say it is puzzling how a single star could have generated so much energy as to be seen across the entire Universe. The science team has not yet determined the nature of the exploded star. A detailed analysis is forthcoming.

Spaceflight Now Plus
Additional coverage for subscribers:
AUDIO: LISTEN TO MONDAY'S PRESS BRIEFING PLAY
SUBSCRIBE NOW


Scientists measure cosmic distances via redshift, the extent to which light is "shifted" toward the red, or lower energy, part of the electromagnetic spectrum during the light's long journey across the Universe. The greater the distance, the higher the redshift.

The September 4 burst, named GRB 050904, has a redshift of 6.29, which translates to a distance of about 13 billion light-years from Earth. The Universe is thought to be 13.7 billion years old. The previous most distant gamma-ray burst had a redshift of 4.5. The most distant quasar known is at a redshift of 6.4.

This burst was also very long, lasting more than 200 seconds, whereas most bursts last only about 10 seconds. The detection of this burst confirms that massive stars mingled with the oldest quasars. The detection also confirms that even more distant star explosions can be studied through combined observations of Swift and the network of world-class telescopes.

"This is uncharted territory," said Dr. Daniel Reichart, University of North Carolina (UNC), Chapel Hill, who spearheaded the distance measurement. "This burst smashes the old distance record by 500 million light-years. We are finally starting to see the remnants of some of the oldest objects in the Universe," he added.


The most distant explosion ever detected occurred deep deep deep in the constellation Pisces. The explosion -- a gamma-ray burst, likely from a very early star explosion -- occurred when the Universe was about 6% its current age. Illustration: NASA
 
Swift detected the burst and relayed its coordinates within minutes to scientists around the world. Reichart's team discovered the afterglow using the Southern Observatory for Astrophysical Research (SOAR) telescope atop Cerro Pachon, Chile. Over the next several nights, the UNC team used SOAR and the Gemini South telescope, also on Cerro Pachon, to calculate a redshift of greater than 6 using a light filtering technique. A team led by Nobuyuki Kawai of the Tokyo Institute of Technology used the Subaru Observatory on Mauna Kea, Hawaii, to confirm the distance and fine-tune the redshift measurement to 6.29, using a technique called spectroscopy.

"The earliest stars exploded eons ago, we know very little about them," said Josh Haislip, a UNC team member who analyzed data from SOAR. "One of the best ways we can study them is by watching for their explosions. Swift can pinpoint the location of the explosions, and telescopes such as SOAR can study the composition of the debris to understand where and when these stars formed and what they were made of," he added.

The SOAR telescope is funded by the U.S. National Optical Astronomy Observatory, Tucson, Ariz., through the National Science Foundation (NSF), Arlington, Va.; the Ministry of Science of Brazil; Michigan State University, East Lansing; and UNC. The twin Gemini Observatory telescopes represent an international partnership funded in part by the NSF. Goddard manages the Swift mission for NASA's Science Mission Directorate, Washington. Mission operations are conducted by Penn State University, University Park. Swift's other national laboratories, universities and international partners include the Los Alamos National Laboratory, N.M.; Sonoma State University, Rohnert Park, Calif.; the United Kingdom; and Italy.