Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Shuttle delayed to 2006
NASA Administrator Mike Griffin and Associate Administrator for Space Operations Bill Gerstenmaier hold a news conference from Agency Headquarters in Washington on August 18 to announce a delay in the next shuttle flight from September to next March. (38min 02sec)

 Play video:
Dial-up | Broadband 1 & 2

 Download audio:
MP3 file

Mars probe leaves Earth
The Mars Reconnaissance Orbiter lifts off aboard a Lockheed Martin Atlas 5 rocket from Cape Canaveral's Complex 41.

 Play video:
   Live NASA TV
 Play video:
   Playalinda Beach
 Play video:
   VAB roof camera
 Play video:
   Long-range tracker
 Play video:
   Static Test Rd.

Launch pad demolition
Explosives topple the abandoned Complex 13 mobile service tower at Cape Canaveral Air Force Station. This video was shot from the blockhouse roof at neighboring Complex 14 where John Glenn was launched in 1962.

 Play video:
   Full view | Close-up

First tile gap filler
This extended movie shows Steve Robinson riding the station's robot arm, moving within reach of Discovery's underside and successfully pulling out the first protruding tile gap filler. (6min 45sec file)
 Play video

Second tile gap filler
This extended movie shows Steve Robinson successfully pulling out the second protruding tile gap filler. (9min 23sec file)
 Play video

Storage platform
The External Stowage Platform-2 designed to hold spares and replacement equipment for the space station is attached to the Quest airlock module's outer hull during the spacewalk. (6min 29sec file)
 Play video

Station experiments
Japanese astronaut Soichi Noguchi climbed 60 feet above Discovery's payload bay to the space station's P6 solar array truss to attach the Materials International Space Station Experiment-5 package. (4min 08sec file)
 Play video

Opening the suitcase
Noguchi deploys the MISSE-5 package, revealing a host of material samples to the space environment for extended exposure. (3min 43sec file)
 Play video

Atop the station
Noguchi's helmet-mounted camera provides a stunning view atop the P6 truss showing Discovery to his right and the Russian segment of the space station on his left. (2min 31sec file)
 Play video

Become a subscriber
More video



NASA's Swift satellite finds newborn black holes
NASA NEWS RELEASE
Posted: August 18, 2005

Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds.


This artist's concept shows what happens when a massive star runs out of fuel. It no longer has the energy to support its mass. The core collapses and forms a black hole. Shockwaves bounce out and obliterate the outer shells of the star. Credit: NASA/GSFC/Dana Berry
 
These black holes are born in massive star explosions. An initial blast obliterates the star, yet the chaotic black hole activity appears to re-energize the explosion several times in just a few minutes. This is a dramatically different view of star death, one that entails multiple explosive outbursts and not just a single bang, as previously thought.

"Stars are exploding two, three and sometimes four times in the first minutes following the initial explosion," said Prof. David Burrows of Penn State, University Park, Pa. "First comes a blast of gamma rays followed by intense pulses of X-rays. The energies involved are much greater than anyone expected," he added.

Scientists have seen this phenomenon in nearly half of the longer gamma-ray bursts detected by Swift. These gamma-ray bursts are the most powerful explosions known. They are forerunners of a massive star explosion called a hypernova, which is bigger than a supernova. Using Swift, scientists are finally able to see gamma-ray bursts within minutes after the trigger, instead of hours or days, and are privy to newborn black hole activity.

Until this latest Swift discovery, scientists assumed a simple scenario of a single explosion followed by a graceful afterglow of the dying embers. The new scenario of a blast followed by a series of powerful "hiccups" is particularly evident in a gamma-ray burst from May 2, 2005, named GRB 050502B. This burst lasted 17 seconds during the early morning hours in the constellation Leo. About 500 seconds later, Swift detected a spike in X-ray light about 100 times brighter than anything seen before.

Previously there had been hints of an "X-ray bump" between the burst and afterglow in previous gamma-ray bursts, coming a minute or so after the burst. Swift has seen more than one dozen clear cases of multiple explosions. There are several theories to describe this newly discovered phenomenon and most point to the presence of a newborn black hole.

"The newly formed black hole immediately gets to work," said Prof. Peter Meszaros of Penn State, head of the Swift theory team. "We aren't clear on the details yet, but it appears to be messy. Matter is falling into the black hole, which releases a great amount of energy. Other matter gets blasted away from the black hole and flies out into the interstellar medium. This is by no means a smooth operation," he added.

Another theory is the jet of material shooting away from the dead star starts to fall back onto itself, creating shockwaves in the jet core that ram together blobs of gas and produce X-ray light.

"None of this was realized before simply because we couldn't get to the scene of the explosion fast enough," said Dr. Neil Gehrels of NASA Goddard Space Flight Center, Greenbelt, Md., Swift principal investigator. "Swift has the unique ability to detect bursts and turn its X-ray and ultraviolet-optical telescopes to the explosion's embers within minutes. As such, Swift is detecting new burst details that might rewrite theory," Gehrels said.

Swift carries three main instruments: the Burst Alert Telescope (BAT); X-ray Telescope (XRT); and the Ultraviolet/Optical Telescope (UVOT). Today's announcement is based largely on XRT data. The XRT was built at Penn State with partners at the Brera Astronomical Observatory in Italy and the University of Leicester in England.

Swift was launched in November 2004. It is a NASA mission in partnership with the Italian Space Agency and the Particle Physics and Astronomy Research Council, United Kingdom. Swift is managed by Goddard. Penn State controls science and flight operations from the Mission Operations Center in University Park, Pa. The spacecraft was built in collaboration with national laboratories, universities and international partners.

A paper discussing these findings appears online today on Science Express and in the September 9 issue of Science. Burrows is lead author of the paper.