Spaceflight Now Home

Spaceflight Now +

Premium video content for our Spaceflight Now Plus subscribers.

Next mission to Mars
NASA's next voyage to the Red Planet is introduced by project managers and scientists in this news conference from 1 p.m. EDT on Thursday, July 21. The Mars Reconnaissance Orbiter will launch in August on a mission to provide the sharpest images ever taken of Earth's neighboring planet. (34min 10sec file)

 Play video:
   Dial-up| Broadband

 Download audio:
   For iPod

Soyuz moved
Expedition 11 commander Sergei Krikalev and science officer John Phillips undock their Soyuz capsule from the Pirs module at 6:38 a.m. EDT, back 82 feet away, fly sideways for 45 feet and then guide the craft to docking with the Zarya module at 7:08 a.m. (30min 57sec file)
 Play video

Post-scrub briefing
This post-scrub news conference occurred at 4:30 p.m. EDT on Wednesday, July 13 following postponement of Discovery's launch. (31min 30sec file)

 Play video:
   Dial-up| Broadband

Discovery launch delay
Launch of space shuttle Discovery on the return to flight mission was scrubbed because of trouble with engine cutoff sensors in the external tank. (4min 45sec file)
 Play video

To the pad
The five-man, two-woman astronaut crew departs the Operations and Checkout Building to board the AstroVan for the ride to launch pad 39B. (3min 01sec file)
 Play video

Suiting up
The astronauts -- in two groups -- don their launch and entry partial pressure suits before heading to the pad.
 Part 1 | Part 2

Pre-launch snack
Discovery's seven astronauts gather around the dining room table in crew quarters for a pre-launch snack before suiting up and heading to the pad. (1min 53sec file)
 Play video

Service tower rollback
Pad 39B's Rotating Service Structure is retracted from around shuttle Discovery Tuesday night in preparation for the first launch attempt. (4min 36sec file)
 Play video

Astronaut arrival
The Gulfstream jet carrying space shuttle Discovery's seven astronauts arrives at the Kennedy Space Center launch site after a two-hour flight from Houston. (5min 54sec file)
 Play video

Crew speaks
Each Discovery astronaut makes a speech to the assembled group of news reporters and photographers at the runway to cover the crew's arrival at Kennedy Space Center. (13min 57sec file)
 Play video

What is NASA's future?
Administrator Mike Griffin is the sole witness testifying before the House Science Committee in this hearing on the future of NASA. (2hr 01min 09sec file)
 Play video

Address to NASA
One day before beginning the space shuttle Flight Readiness Review, Administrator Mike Griffin gives a televised address to agency workers and answers questions. (26min 09sec file)

 Play video:
   Dial-up| Broadband

 Download audio:
   For iPod

Shuttle collection
As excitement builds for the first space shuttle launch in over two years, this comprehensive video selection captures the major pre-flight events for Discovery and her seven astronauts.
 See selection

Become a subscriber
More video

Dustiest star could harbor a young Earth
Posted: July 21, 2005

A relatively young star located about 300 light-years away is greatly improving our understanding of the formation of Earth-like planets.

Artist's conception of a possible collision around BD +20 307 that might have created some of the dust observed in the recent Gemini/ Keck observations. The collisions responsible for this dust could range in size from the largest known asteroids (approximated here) to planets the size of the Earth or Mars. Credit: Gemini Observatory/Jon Lomberg
The star, going by the unassuming name of BD +20 307, is shrouded by the dustiest environment ever seen so close to a Sun-like star well after its formation. The warm dust is believed to be from recent collisions of rocky bodies at distances from the star comparable to that of the Earth from the Sun. The results were based on observations done at the Gemini and W.M. Keck Observatories, and published in the July 21 issue of the British science journal Nature.

This finding supports the idea that comparable collisions of rocky bodies occurred early in our solar system's formation about 4.5 billion years ago. Additionally, this work could lead to more discoveries of this sort which would indicate that the rocky planets and moons of our inner solar system are not as rare as some astronomers suspect.

"We were lucky. This set of observations is like finding the proverbial needle in the haystack," said Inseok Song, the Gemini Observatory astronomer who led the U.S.- based research team. "The dust we detected is exactly what we would expect from collisions of rocky asteroids or even planet- sized objects, and to find this dust so close to a star like our Sun bumps the significance way up. However, I can't help but think that astronomers will now find more average stars where collisions like these have occurred."

For years, astronomers have patiently studied hundreds of thousands of stars in the hopes of finding one with an infrared dust signature (the characteristics of the starlight absorbed, heated up and reemitted by the dust) as strong as this one at Earth-to-Sun distances from the star. "The amount of warm dust near BD+20 307 is so unprecedented I wouldn't be surprised if it was the result of a massive collision between planet-size objects, for example, a collision like the one which many scientists believe formed Earth's moon," said Benjamin Zuckerman, UCLA professor of physics and astronomy, member of NASA's Astrobiology Institute, and a co-author on the paper. The research team also included Eric Becklin of UCLA and Alycia Weinberger formerly at UCLA and now at the Carnegie Institution.

BD +20 307 is slightly more massive than our Sun and lies in the constellation Aries. The large dust disk that surrounds the star has been known since astronomers detected an excess of infrared radiation with the Infrared Astronomical Satellite (IRAS) in 1983. The Gemini and Keck observations provide a strong correlation between the observed emissions and dust particles of the size and temperatures expected by the collision of two or more rocky bodies close to a star.

Because the star is estimated to be about 300 million years old, any large planets that might orbit BD +20 307 must have already formed. However, the dynamics of rocky remnants from the planetary formation process might be dictated by the planets in the system, as Jupiter did in our early solar system. The collisions responsible for the observed dust must have been between bodies at least as large as the largest asteroids present today in our solar system (about 300 kilometers across). "Whatever massive collision occurred, it managed to totally pulverize a lot of rock," said team member Alycia Weinberger.

Given the properties of this dust, the team estimates that the collisions could not have occurred more than about 1,000 years ago. A longer history would give the fine dust (about the size of cigarette smoke particles) enough time to be dragged into the central star.

The dusty environment around BD +20 307 is thought to be quite similar, but much more tenuous than what remains from the formation of our solar system. "What is so amazing is that the amount of dust around this star is approximately one million time greater than the dust around the Sun," said UCLA team member Eric Becklin. In our solar system the remaining dust scatters sunlight to create an extremely faint glow called the zodiacal light (image available on web). It can be seen under ideal conditions with the naked eye for a few hours after evening or before morning twilight.

The team's observations were obtained using Michelle, a mid-infrared spectrograph/imager built by the UK Astronomy Technology Centre, on the Frederick C. Gillett Gemini North Telescope, and the Long Wavelength Spectrograph (LWS) at the W.M. Keck Observatory on Keck I both on Mauna Kea Hawai'i.