Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

NOAA pre-launch
Officials from NASA, NOAA, the Air Force and Boeing hold the pre-launch news conference at Vandenberg Air Force Base to preview the mission of a Delta 2 rocket and the NOAA-N weather satellite. (29min 54sec file)

 Play video:
   Dial-up | Broadband

Countdown culmination
Watch shuttle Discovery's countdown dress rehearsal that ends with a simulated main engine shutdown and post-abort safing practice. (13min 19sec file)
 Play video

Going to the pad
The five-man, two-woman astronaut crew departs the Operations and Checkout Building to board the AstroVan for the ride to launch pad 39B during the Terminal Countdown Demonstration Test countdown dress rehearsal. (3min 07sec file)
 Play video

Suiting up
After breakfast, the astronauts don their launch and entry partial pressure suits before heading to the pad. (3min 14sec file)
 Play video

Astronaut breakfast
Dressed in festive Hawaiian shirts, Discovery's seven astronauts are gathered around the dining room table in crew quarters for breakfast. They were awakened at 6:05 a.m. EDT to begin the launch day dress rehearsal at Kennedy Space Center. (1min 57sec file)
 Play video

Training at KSC
As part of their training at Kennedy Space Center, the Discovery astronauts learn to drive an armored tank that would be used to escape the launch pad and receive briefings on the escape baskets on the pad 39B tower. (5min 19sec file)
 Play video

Discovery's crew
Shuttle Discovery's astronauts pause their training at launch pad 39B to hold an informal news conference near the emergency evacuation bunker. (26min 11sec file)

 Play video:
   Dial-up | Broadband

Astronaut Hall of Fame
The 2005 class of Gordon Fullerton, Joe Allen and Bruce McCandless is inducted into the U.S. Astronaut Hall of Fame at the Saturn 5 Center on April 30. (1hr 24min 55sec file)
 Play video

'Salute to Titan'
This video by Lockheed Martin relives the storied history of the Titan rocket family over the past five decades. (4min 21sec file)
 Play video

Titan history
Footage from that various Titan rocket launches from the 1950s to today is compiled into this movie. (6min 52sec file)
 Play video

Become a subscriber
More video



Chandra space observatory catches X-ray super-flares
NASA NEWS RELEASE
Posted: May 10, 2005

New results from NASA's Chandra X-ray Observatory about the Orion Nebula imply super-flares torched our young solar system. Such X-ray flares likely affected the planet-forming disk around the early sun, and may have enhanced the survival chances of Earth.


This illustration shows an X-ray flares from a young star. Credit: NASA/CXC/A.Hobart
 
By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observations ever taken of any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away from Earth.

The Orion Nebula provides an unparalleled view of 1,400 young stars, 30 of which are prototypes of the early sun. Scientists have discovered these young stars erupt in enormous flares that dwarf, in energy, size and frequency, anything seen from our sun today.

"We don't have a time machine to see how the young sun behaved, but the next best thing is to observe sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form."

A key finding is the more violent stars produce flares one hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth.

"Big X-ray flares could lead to planetary systems like ours, where Earth is a safe distance from the sun," said Eric Feigelson of Penn State University in University Park. He is the principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star."


This Chandra image shows the Orion Nebula Cluster, a rich cluster of young stars. Credit: NASA/CXC/Penn State/E.Feigelson & K.Getman et al.
 
According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they form. Specifically, this turbulence can help prevent planets from rapidly migrating towards the young star.

"Although these flares may be creating havoc in the disks, they ultimately could do more good than harm," said Feigelson. "These flares may be acting like a planetary protection program."

About half of the young suns in Orion show evidence of planet-forming disks including four lying at the center of proplyds (proto-planetary disks) imaged by NASA's Hubble Space Telescope. X-ray flares bombard these disks, likely giving them an electric charge. This charge, combined with motion of the disk and the effects of magnetic fields, should create turbulence in the disk.

The numerous results from the Chandra Orion Ultradeep Project will appear in an upcoming issue of The Astrophysical Journal Supplement. The team contains 37 scientists from institutions in the U.S., Italy, France, Germany, Taiwan, Japan and the Netherlands.

NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. Northrop Grumman, Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.