Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

External tank arrives
The external tank for space shuttle Discovery's return-to-flight launch arrives at Kennedy Space Center. The tank is offloaded from the barge and moved into the Vehicle Assembly Building. (3min 15sec file)
 Play video

Shuttle news conference
Senior space shuttle program officials hold a news conference at Kennedy Space Center on Jan. 6 following delivery of the redesigned external fuel tank to be used on the return-to-flight launch. (51min 47sec file)
 Play video

Tank leaves New Orleans
The redesigned external fuel tank to be used on the return-to-flight space shuttle launch is rolled out of the Michoud Assembly Facility and place on a barge for shipment from New Orleans to Kennedy Space Center. (1min 29sec file)
 Play video

Final touches
Technicians put the final touches on the Lockheed Martin-built space shuttle external fuel tank in advance of its shipment to the Cape. (1min 44sec file)
 Play video

Mars rover cake
NASA Administrator Sean O'Keefe is presented with a commemorative birthday cake marking the one-year anniversary of the Mars rover Spirit's landing. (1min 21sec file)
 Play video

Rover news briefing
On the one-year anniversary of Spirit's landing on Mars, mission officials hold a status news conference on the twin exploration rovers to discuss the latest findings and future plans for the craft. (31min 20sec file)
 Play video

NASA chief speech
During celebrations marking the Mars rover milestone on Jan. 3, NASA Administrator Sean O'Keefe gave this speech at the Jet Propulsion Laboratory. (10min 20sec file)
 Play video

The Mars rover story
Storyteller Syd Lieberman presents "Twelve Wheels on Mars" that describes the adventure to build, launch and explore with the Mars rovers Spirit and Opportunity. (54min 57sec file)
 Play video

Delta 4-Heavy launch
The Boeing Delta 4-Heavy rocket is launched from Cape Canaveral on its demonstration flight. (4min 35sec file)
 Play video

Onboard the Heavy
An onboard camera records the launch of Boeing's Delta 4-Heavy rocket from liftoff through separation of the outer boosters. (4min 40sec file)
 Play video

Become a subscriber
More video



Maps reveal dark matter clumps in galaxies
YALE UNIVERSITY NEWS RELEASE
Posted: January 8, 2005

Hubble Space Telescope data, analyzed by a Yale astronomer using gravitational lensing techniques, has generated a spatial map demonstrating the clumped substructure of dark matter inside clusters of galaxies.

 
Gravitational lensing image of galaxies (yellow to red) and haloes from clumped dark matter (blue).
 
Clusters of galaxies (about a million, million times the mass of our sun), are typically made up of hundreds of galaxies bound together by gravity. About 90 percent of their mass is dark matter. The rest is ordinary atoms in the form of hot gas and stars.

Although little is known about it, cold dark matter is thought to have structure at all magnitudes. Theoretical models of the clumping properties were derived from detailed, high resolution simulations of the growth of structure in the Universe. Although previous evidence supported the "concordance model" of a Universe mostly composed of cold, dark matter, the predicted substructure had never been detected.

In this study, Yale assistant professor of astronomy and physics Priyamvada Natarajan and her colleagues demonstrate that, at least in the mass range of typical galaxies in clusters, there is an excellent agreement between the observations and theoretical predictions of the concordance model.

Using gravitational lensing made it possible for the observers to visualize light from distant galaxies as it bent around mass in its way. This allowed the researchers to measure light deflections that indicated structural clumps in the dark matter.

"We used an innovative technique to pick up the effect of precisely the clumps which might otherwise be obscured by the presence of more massive structures," said Natarajan. "When we compared our results with theoretical expectations of the concordance model, we found extremely good agreement, suggesting that the model passes the substructure test for the mass range we are sensitive to with this technique."

"We think the properties of these clumps hold a key to the nature of dark matter - which is presently unknown," said Natarajan. "The question remains whether these predictions and observations agree for smaller mass clumps that are as yet undetected."

Co-author on the study, funded by Yale University, is Volker Springel, MPA, Garching, Germany. Other collaborators include. Jean-Paul Knee, LAM - OAMP, Marseille, France, Ian Smail, University of Durham, U.K., and Richard Ellis of Caltech.