Spaceflight Now Home

Spaceflight Now +

Premium video content for our Spaceflight Now Plus subscribers.

Delta 4-Heavy launch
The Boeing Delta 4-Heavy rocket is launched from Cape Canaveral on its demonstration flight. (4min 35sec file)
 Play video

Onboard the Heavy
An onboard camera records the launch of Boeing's Delta 4-Heavy rocket from liftoff through separation of the outer boosters. (4min 40sec file)
 Play video

Launch of Atlas 5
The Lockheed Martin Atlas 5 rocket launches at 7:07 a.m. EST from Cape Canaveral carrying the AMERICOM 16 communications spacecraft. (6min 22sec file)
 Play video

Deep Impact overview
Rick Grammier, NASA's Deep Impact project manager from the Jet Propulsion Laboratory, provides a detailed overview of the spacecraft and its mission. (4min 54sec file)
 Play video

Science preview
Deep Impact principal investigator Michael A'Hearn explains how the comet collision will occur and what scientists hope to learn. (7min 11sec file)
 Play video

Pre-flight news briefing
The pre-flight news conference is held at NASA Headquarters on December 14 to preview the Deep Impact mission to intercept a comet and blast a projectile into it. (54min 19sec file)
 Play video

Become a subscriber
More video

Giant star's corona brightens with age, Chandra shows
Posted: January 2, 2005

Beta Ceti is a bright, giant star with a hot corona that radiates about 2,000 times more X-ray power than the Sun. Scientists suspect that this X-ray activity is somehow related to its advanced stage of evolution called core helium burning. During this stage, the core of the star is very hot (more than a hundred million degrees Celsius) and converting helium to carbon via nuclear fusion reactions.

Credit: NASA/CXC
Using the theory of how stars evolve, we can reconstruct the history of Beta Ceti, a star with a mass of about 3 Suns. Over the first billion years of its existence, Beta Ceti was powered by nuclear fusion reactions converting hydrogen to helium in the core.

After the hydrogen in the core was exhausted, the central region of the star contracted until hydrogen gas around the helium core became hot and dense enough for hydrogen fusion reactions to ignite there. This powerful new energy source caused the outer regions of the star to expand greatly and cool. At this point Beta Ceti became a red giant. During the red giant phase, Beta Ceti would have been a very weak X-ray source.

After about 10 million years, the core of the star contracted and heated to more than 100 million degrees, enabling helium fusion reactions to occur there. In this core helium burning stage, which will last 100 million years or more, the overall diameter of the star has shrunk to about 20 times that of the Sun and the surface temperature has increased, so it is no longer a red giant star.