Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Phoebe science briefing
Scientists report scientific results from the Cassini spacecraft's close-up examination of Saturn's moon Phoebe. (31min 53sec file)
 Play video

Space station briefing
International Space Station officials preview the upcoming Expedition 9 spacewalk to replace a faulty power control box that supports one of the U.S. control moment gyros. (66min 08sec file)
 Play video

Stardust briefing
Scientist present new findings from the Stardust spacecraft's encounter with Comet Wild 2 in this news conference from NASA Headquarters on June 17. (26min 12sec file)
 Play video

New pictures explained
New pictures of Comet Wild 2 from NASA's Stardust spacecraft are shown here with narration by lead mission scientist Donald Brownlee. (3min 06sec file)
 Play video

Stardust's comet flyby
Animation depicting Stardust's flyby of Comet Wild 2 and the powerful jets of dust streaming from the comet's surface is presented with narration by scientist Benton Clark. (1min 59sec file)
 Play video

Moon-Mars commission
After releasing its report, the President's Commission on Moon, Mars and Beyond holds a news conference in Washington. (60min 18sec file)
 Play video

NASA workers respond
NASA Administrator Sean O'Keefe and commission chairman Pete Aldridge address the NASA workforce and answer questions after the Moon, Mars and Beyond report is released. (75min 24sec file)
 Play video

Tuesday's Mars briefing
Mars rover Spirit's arrival at the Columbia Hills, trouble with one of its wheels and Opportunity's descent into Endurance Crater and all of the latest pictures are presented at this briefing from June 15. (30min 27sec file)
 Play video

Ride with Opportunity
Cameras on Opportunity provides this "ride-along" view of the rover's risky drive into Endurance Crater. Expert narration by science team member Scott McLennan. (30sec file)
 Play video

Opportunity panorama
Another stunning color panorama from the Mars rover Opportunity looking into Endurance Crater and the surrounding plains is presented with expert narration by science team member Scott McLennan. (1min 30sec file)
 Play video

Spirit panorama
Spirit has generated this panorama from the base of the Columbia Hills. Expert narration is provided by science team member Larry Soderblom. (1min 15sec file)
 Play video

New Spirit pictures
New pictures from Mars rover Spirit showing the "Pot of Gold" rock area and other features are revealed with expert narration by science team member Larry Soderblom. (4min 47sec file)
 Play video

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Scientists discover two new interstellar molecules
NATIONAL RADIO ASTRONOMY OBSERVATORY NEWS RELEASE
Posted: June 27, 2004

A team of scientists using the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT) has discovered two new molecules in an interstellar cloud near the center of the Milky Way Galaxy. This discovery is the GBT's first detection of new molecules, and is already helping astronomers better understand the complex processes by which large molecules form in space.

The 8-atom molecule propenal and the 10-atom molecule propanal were detected in a large cloud of gas and dust some 26,000 light-years away in an area known as Sagittarius B2. Such clouds, often many light-years across, are the raw material from which new stars are formed.

"Though very rarefied by Earth standards, these interstellar clouds are the sites of complex chemical reactions that occur over hundreds-of-thousands or millions of years," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, Md. "Over time, more and more complex molecules can be formed in these clouds. At present, however, there is no accepted theory addressing how interstellar molecules containing more than 5 atoms are formed."

So far, about 130 different molecules have been discovered in interstellar clouds. Most of these molecules contain a small number of atoms, and only a few molecules with eight or more atoms have been found in interstellar clouds. Each time a new molecule is discovered, it helps to constrain the formation chemistry and the nature of interstellar dust grains, which are believed to be the formation sites of most complex interstellar molecules.

Hollis collaborated with Anthony Remijan, also of NASA Goddard; Frank J. Lovas of the National Institute of Standards and Technology in Gaithersburg, Md.; Harald Mollendal of the University of Oslo, Norway; and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, W.Va. Their results were accepted for publication in the Astrophysical Journal Letters.

In the GBT experiment, three aldehyde molecules were observed and appear to be related by simple hydrogen addition reactions, which probablyoccur on the surface of interstellar grains. An aldehyde is a moleculethat contains the aldehyde group (CHO): a carbon atom singly bonded to a hydrogen atom and double-bonded to an oxygen atom; the remaining bond on that same carbon atom bonds to the rest of the molecule.

Starting with previously reported propynal (HC2CHO), propenal (CH2CHCHO) is formed by adding two hydrogen atoms. By the same process propanal (CH3CH2CHO) is formed from propenal.

After these molecules are formed on interstellar dust grains, they may be ejected as a diffuse gas. If enough molecules accumulate in the gas, they can be detected with a radio telescope. As the molecules rotate end-for-end, they change from one rotational energy state to another, emitting radio waves at precise frequencies. The "family" of radio frequencies emitted by a particular molecule forms a unique "fingerprint" that scientists can use to identify that molecule. The scientists identified the two new aldehydes by detecting a number of frequencies of radio emission in what is termed the K-band region (18 to 26 GHz) of the electromagnetic spectrum.

"Interstellar molecules are identified by means of the frequencies that are unique to the rotational spectrum of each molecule," said Lovas. "These are either directly measured in the laboratory or calculated from the measured data. In this case we used the calculated spectral frequencies based on an analysis of the literature data."

Complex molecules in space are of interest for many reasons, including their possible connection to the formation of biologically significant molecules on the early Earth. Complex molecules might have formed on the early Earth, or they might have first formed in interstellar clouds and been transported to the surface of the Earth.

Molecules with the aldehyde group are particularly interesting since several biologically significant molecules, including a family of sugar molecules, are aldehydes.

"The GBT can be used to fully explore the possibility that a significant amount of prebiotic chemistry may occur in space long before it occurs on a newly formed planet," said Remijan. "Comets form from interstellar clouds and incessantly bombard a newly formed planet early in its history. Craters on our Moon attest to this. Thus, comets may be the delivery vehicles for organic molecules necessary for life to begin on a new planet."

Laboratory experiments also demonstrate that atomic addition reactions -- similar to those assumed to occur in interstellar clouds -- play a role in synthesizing complex molecules by subjecting ices containing simpler molecules such as water, carbon dioxide, and methanol to ionizing radiation dosages. Thus, laboratory experiments can now be devised with various ice components to attempt production of the aldehydes observed with the GBT.

"The detection of the two new aldehydes, which are related by a common chemical pathway called hydrogen addition, demonstrates that evolution to more complex species occurs routinely in interstellar clouds and that a relatively simple mechanism may build large molecules out of smaller ones. The GBT is now a key instrument in exploring chemical evolution in space," said Hollis.

The GBT is the world's largest fully steerable radio telescope; it is operated by the NRAO.

"The large diameter and high precision of the GBT allowed us to study small interstellar clouds that can absorb the radiation from a bright background source. The sensitivity and flexibility of the telescope gave us an important new tool for the study of complex interstellar molecules," said Jewell.

The NRAO is a facility of the National Science Foundation, operated under a cooperative agreement with Associated Universities, Inc.