Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Stardust briefing
Scientist present new findings from the Stardust spacecraft's encounter with Comet Wild 2 in this news conference from NASA Headquarters on June 17. (26min 12sec file)
 Play video

New pictures explained
New pictures of Comet Wild 2 from NASA's Stardust spacecraft are shown here with narration by lead mission scientist Donald Brownlee. (3min 06sec file)
 Play video

Stardust's comet flyby
Animation depicting Stardust's flyby of Comet Wild 2 and the powerful jets of dust streaming from the comet's surface is presented with narration by scientist Benton Clark. (1min 59sec file)
 Play video

Moon-Mars commission
After releasing its report, the President's Commission on Moon, Mars and Beyond holds a news conference in Washington. (60min 18sec file)
 Play video

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Link found between Earth's oceans and Jupiter's bands
AMERICAN GEOPHYSICAL UNION NEWS RELEASE
Posted: June 22, 2004

Scientists have discovered a striking similarity between certain ocean currents on Earth and the bands that characterize the surface of large, gaseous planets like Jupiter.

Boris Galperin of the University of South Florida's College of Marine Science in Saint Petersburg and colleagues in the United States, Israel, and Japan report their findings later this month in Geophysical Research Letters, published by the American Geophysical Union.

"The banded structure of Jupiter has long been a subject of fascination and intensive research," says Galperin, a physical oceanographer who analyzes turbulence theory and applies theory and numerical modeling to analyze planetary processes. "The visible bands on Jupiter are formed by clouds moving along a stable set of alternating flows."

Galperin and his colleagues have discovered that oceans on Earth also harbor stable alternating bands of current that, when modeled, are similar to the bands on Jupiter, due to the same kinds of "jets." "We think this resemblance is more than just visual," says Galperin. "The energy spectrum of the oceanic jets obeys a power law that fits the spectra of zonal flows on the outer planets."

The observation begs the question of whether these similar phenomena are rooted in similar physical forces. "To answer this question," says Galperin, "one needs to determine what physical processes govern the large-scale dynamics in both systems."

According to Galperin, there is a similarity in the forcing agents for planetary and oceanic circulations. The study maintains that both sets of zonal jets -- the ocean's bands of currents and the bands of Jupiter's clouds -- are the result of an underlying turbulent flow regime common in nature.

Comparing the energy spectra on giant planets and in Earth's oceans can yield valuable information about the transport properties of the oceans, says Galperin, especially about the strongest currents in the mid-depth ocean. "The implications of these findings for climate research on Earth and the designs of future outer space observational studies are important," he says.

The study was funded by the U.S. Army Research Office and the Israel Science Foundation.