Impressive new images released of Saturn and Io
EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE
Posted: February 1, 2002

With its new NAOS-CONICA Adaptive Optics facility, the ESO Very Large Telescope (VLT) at the Paranal Observatory has recently obtained impressive views of the giant planet Saturn and Io, the volcanic moon of Jupiter.

They show the two objects with great clarity, unprecedented for a ground-based telescope. The photos were made during the ongoing commissioning of this major VLT instrument, while it is being optimized and prepared for regular observations that will start later this year.

"First light" for the new NAOS-CONICA Adaptive Optics facility on the 8.2-m VLT YEPUN telescope at the Paranal Observatory was achieved in November 2001. A second phase of the "commissioning" of the new facility began on January 22, 2002, now involving specialized observing modes and with the aim of trimming it to maximum performance before it is made available to the astronomers later this year.

During this demanding and delicate work, more test images have been made of various astronomical objects. Some of these show selected solar system bodies, for which the excellent image sharpness achievable with this new instrument is of special significance. In fact, the VLT photos of the giant planet Saturn and Io, the innermost of Jupiter's four large moons, are among the sharpest ever obtained from the ground.

The NAOS adaptive optics corrector was built, under an ESO contract, by the Office National d'Etudes et de Recherches Aerospatiales (ONERA), Laboratoire d'Astrophysique de Grenoble (LAOG) and the DESPA and DASGAL laboratories of the Observatoire de Paris in France, in collaboration with ESO. The CONICA infra-red camera was built, under an ESO contract, by the Max-Planck-Institut für Astronomie (MPIA) (Heidelberg) and the Max-Planck Institut für Extraterrestrische Physik (MPE) (Garching) in Germany, in collaboration with ESO.

Saturn - Lord of the rings
The NAOS/CONICA image of Saturn, the second-largest planet in the solar system, was obtained at a time when Saturn was close to summer solstice in the southern hemisphere. At this moment, the tilt of the rings was about as large as it can be, allowing the best possible view of the planet's South Pole. That area was on Saturn's night side in 1982 and could therefore not be photographed during the Voyager encounter.

ESO
The giant planet Saturn, as observed with the VLT NAOS-CONICA Adaptive Optics instrument on December 8, 2001; the distance was 1209 million km. It is a composite of exposures in two near-infrared wavebands (H and K) and displays well the intricate, banded structure of the planetary atmosphere and the rings. Note also the dark spot at the south pole at the bottom of the image. One of the moons, Tethys, is visible as a small point of light below the planet. It was used to guide the telescope and to perform the adaptive optics "refocussing" for this observation. Photo: European Southern Observatory
 
The dark spot close to the South Pole is a remarkable structure that measures approximately 300 km across. It was only recently observed in visible light from the ground with a telescope at the Pic du Midi Observatory in the Pyrenees (France) - this is the first infrared image to show it.

The bright spot close to the equator is the remnant of a giant storm in Saturn's extended atmosphere that has lasted more than 5 years.

The present photo provides what is possibly the sharpest view of the ring system ever achieved from a ground-based observatory. Many structures are visible, the most obvious being the main ring sections, the inner C-region (here comparatively dark), the middle B-region (here relatively bright) and the outer A-region, and also the obvious dark "divisions", including the well-known, broad Cassini division between the A- and B-regions, as well as the Encke division close to the external edge of the A-region and the Colombo division in the C-region. Moreover, many narrow rings can be seen at this high image resolution, in particular within the C-region - they may be compared with those seen by the Voyager spacecraft during the flybys.

This image demonstrates the capability of NAOS-CONICA to observe also extended objects with excellent spatial resolution. It is a composite of four short-exposure images taken through the near-infrared H (wavelength 1.6 µm) and K (2.2 µm) filters.

Io - volcanoes and sulphur
Io has a diameter of 3660 km and orbits Jupiter at a mean distance of 422,000 km - one revolution takes 42.5 hours. Like the Earth's moon, it always turns the same side towards the planet. As shown by the Voyager spacecraft in 1979, its surface is covered by active volcanoes and lava fields - it is in fact the most volcanic place known in the solar system.

ESO
Io, the volcanic moon of Jupiter, as imaged with the VLT NAOS-CONICA Adaptive Optics instrument on December 5, 2001, through a near-infrared, narrow optical filter (Brackett-gamma at wavelength 2.166 µm). Photo: European Southern Observatory
 
Due to this activity, Io's surface is continuously reshaped. The features now seen are all correspondingly young, with a mean age of the order of 1 million years only. The variations in appearance and colour are due to different volcanic deposits of sulphur compounds. The cause of all this activity is Jupiter's strong gravitational pull that leads to enormous stresses inside Io and related heating of the entire moon.

This photo is a near-infrared NAOS-CONICA image of Io, obtained on December 5, 2001, through a narrow optical filter at wavelength 2.166 µm. The excellent image resolution makes it possible to identify many features on the surface. Some of these are volcanoes, others correspond to lava fields between these.

Below is a composite of that image and another obtained at longer wavelength (3.8 µm). A latitute-longitude grid has been superposed, with the most prominent features identified by name, including some of the large volcanoes and sulphurus plains on this very active moon.

Io has been observed with the NASA Galileo spacecraft since 1996 at higher resolution in the visible and infrared, especially during close encounters with the satellite (a link to Galileo maps of Io is available below). However, this NAOS image fills a gap in the surface coverage of the infrared images from Galileo.

The capability of NAOS/CONICA to map Io in the infrared at the present high image resolution will allow astronomers to continue the survey of the volcanic activity and to monitor regularly the related surface processes.

ESO
A composite of the same exposure of Io with another obtained at a longer wavelength (L'-filter at 3.8 µm), with a latitude-longitude grid superposed and some of the main surface features identified. Photo: European Southern Observatory