|
||||
![]() |
![]() New images of Eagle Nebula and 'Pillars of Creation' EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE Posted: January 2, 2002 Through imaging at infrared wavelengths, evidence has been found for recent star formation in the so-called "Pillars of Creation" in the Eagle Nebula (also known as Messier 16), made famous when the NASA/ESA Hubble Space Telescope (HST) obtained spectacular visible-wavelength images of this object in 1995.
Using the ISAAC instrument on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory, European astronomers have now made a wide-field infrared image of the Messier 16 region with excellent spatial resolution, enabling them to penetrate the obscuring dust and search for light from newly born stars. Two of the three pillars are seen to have very young, relatively massive stars in their tips. Another dozen or so lower-mass stars seem to be associated with the small "evaporating gaseous globules (EGGs)" that the Hubble astronomers had discovered scattered over the surface of the pillars. These findings bring new evidence to several key questions about how stars are born. Was the formation of these new stars triggered as the intense ultraviolet radiation from the NGC 6611 stars swept over the pillars, or were they already there? Will the new stars be prematurely cut off from surrounding gas cloud, thus stunting their growth? If the new stars have disks of gas and dust around them, will they be destroyed before they have time to form planetary systems? The famous "Pillars of Creation" But before they are, they have a chance to leave a longer-lasting legacy: a whole new generation of stars may be forming within them. Their formation may have been triggered by the immense power of the NGC 6611 stars, or perhaps they had already started to form quietly earlier on, only to be suddenly subjected to the ravages of an ionising storm front. The real question is then: are there or are there not any new born stars inside those "Pillars of Creation"? The Hubble Space Telescope view
A surprising finding made by the Hubble astronomers was that the pillars are covered with a large number (they counted 73) of small bumps and protrusions which in a few cases are almost completely detached from the pillars. With a typical angular size of only 0.5 arcsec, those objects had not been seen in previous ground-based photographs, and it took the exceptional acuity of Hubble to reveal them. The astronomers dubbed these objects "evaporating gaseous globules", shortened to "EGGs". They noted that one or two of these EGGs appeared to have stars right at their tips, and they suggested that perhaps the EGGs are formed as the advancing front of ionised gas driven by the hot NGC 6611 stars is slowed down by the presence of dense knots of gas and dust within the larger pillars. Within those knots then, they hypothesised a population of extremely young stars, still in the womb of their natal cloud but soon to be rudely exposed to a much harsher outside world. However, there was a problem: since their images were taken at visible wavelengths which are relatively easily absorbed by the dust in the EGGs, the Hubble astronomers could not actually see inside the EGGs to test their theory. The VLT looks inside the "Pillars" Over the past twenty years, a number of surveys of M16 have been made at near-infrared, mid-infrared, and millimetre wavelengths. Unfortunately, none of them had this perfect combination of characteristics to answer the crucial question of whether or not there is a population of young stars inside the Eagle's EGGs. However, this past austral autumn (April and May 2001), European astronomers were able to image the Eagle Nebula at near-infrared wavelengths, using the infrared multi-mode ISAAC instrument on the 8.2-m VLT ANTU telescope at ESO's Paranal Observatory in Chile. By specifying that the observations be carried out in so-called "service mode", they ensured that the on-site ESO team could undertake their pre-defined programme under the necessary excellent observing conditions. The results were well worth the effort! The ISAAC near-infrared images cover a 9 x 9 arcmin region, i.e., fourteen times the area seen in the famous Hubble visible image, in three broad-band colours and with sufficient sensitivity to detect young stars of all masses and - most importantly - with an image sharpness as good as 0.35 arcsec. Although this is still some way from the diffraction-limited performance of 0.07 arcsec or better that is now achieved with the adaptive optics system NAOS/CONICA on the VLT telescope, the ISAAC data cover a much wider field-of-view and, vitally, with enough image resolution to probe deep into the individual EGGs. The ISAAC infrared images of Messier 16
Most of the stars are fainter and more yellow. They are ordinary stars behind M16, along the line of sight through the galactic bulge, and are seen through the molecular clouds out of which NGC 6611 formed. Some very red stars are also seen: these are either very young and embedded in gas and dust clouds, or just brighter stars in the background shining through them. Zooming in, (the above view) shows the region of the pillars covered by the Hubble image and its immediate surroundings. The pillars are still obvious, although appearing less prominent in places as one penetrates the thinner parts, getting closer to the goal of probing inside the pillars. Video Clip 08a/01 shows how this appearance changes in a continuous dissolve between the Hubble visible wavelength view and its VLT infrared equivalent. Hunting for new stars in the EGGs
Right at the tip of Column 2, another young star also illuminates a small reflection nebula, again undetected in the Hubble image. And to the south-east, the head of Column 4 (Photo 37e/01) shows complex red nebulosity which the astronomers take to be the signpost of very young objects, so deeply embedded that they are not directly detected in the VLT images. The present team of astronomers has recently investigated this object and believe it is hiding the driving source of a so-called "Herbig-Haro jet", a speedy outflow of gas that can be seen where it ends in a shock, the bright purple arc at the lower edge of zoom-in photo from above.
After completing their search, they found that 11 of the 73 EGGs clearly have stars associated with them. Only one of these had been previously been seen in the Hubble images, and another five EGGs were noted as possibly containing stars. Judging from their near-infrared brightness, most of these stars seem to be less massive than our Sun. Interestingly, most of the EGGs with stars are located on Column 1, and roughly half of them right at the tip of the head, not far from the more massive star that illuminates the reflection nebula. This may be evidence for a small cluster of young stars associated with Column 1 which will soon be revealed as the column is eaten away. Even though the remaining 57 EGGs appear to be empty, it is important to note that there may nevertheless be more young stars in the M16 pillars. After all, neither of the bright young stars at the tips of Columns 1 and 2 are related to any of the Hubble EGGs. Also, it is clear from the VLT image that parts of the pillars and a few of the EGGs are so dense that they remain completely opaque even at near-infrared wavelengths, and may still be harbouring other newstars. An interesting example is the apparently empty EGG number 23, from which another high-speed Herbig-Haro jet seems to be emerging (photo below).
A deeper look at even longer wavelengths will be needed to make a complete census of all the star formation in the Eagle Nebula, perhaps using the VLT thermal-infrared camera, VISIR, when it becomes available or, ultimately, less than a decade from now, the infrared-optimised Next Generation Space Telescope (NGST), the NASA/ESA/CSA successor to the HST. At longer wavelengths, observations with the planned Atacama Large Millimeter Array (ALMA) will also be most useful. From images alone, however, it is not possible to tell which came first: the stars or the EGGs? Were those young stars already forming inside dark clouds before the intense ultraviolet radiation of the nearby massive hot stars swept over the pillars? Or did that radiation compress empty clumps in those clouds and trigger the birth of the stars? In either case, those young stars will soon be exposed to the full fury of the ionisation storm as the columns are evaporated. How will their fate have been affected? Ripped prematurely from the cloud, they will be cut off from the reservoir of material from which they grew, and thus may end up smaller than would otherwise be expected. Also, the dense disks of gas and dust known to girdle young stars will suddenly be heated and boiled away by the ultraviolet radiation, as has been seen happening in the Orion Nebula, perhaps preventing the formation of planets around those stars. Theoreticians studying these problems now have some new data to work with. Nevertheless, to keep things in perspective, it is important to remember that the towering pillars cover only a small fraction of the Eagle Nebula. While a few tens of new stars may be forming in the pillars today, at least a thousand young stars were born in the adjacent NGC 6611 cluster within the last few million years, including the massive stars themselves. The story of the formation of that cluster may be something else altogether, but perhaps just as spectacular.
|
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||||||