|
||||
![]() |
![]() A very massive stellar black hole in Milky Way Galaxy EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE Posted: December 5, 2001 One of the most enigmatic stellar systems in our Milky Way Galaxy has been shown to harbour a very massive black hole. With 14 times more mass than the Sun, this is the heaviest known stellar black hole in the Galaxy.
They were able to identify the low-mass star that feeds the black hole by means of a steady flow of stellar material. A detailed follow-up study revealed how this star revolves around its hungry companion. The analysis of the orbital motion then made it possible to estimate the mass of the black hole. The observation of the heavy black hole in GRS 1915+105 is opening up fundamental questions about how massive stellar black holes form, and whether or not such objects rotate around their own axes. Miniature Quasars in our Galaxy Microquasars are basically the same thing, but at scales a million times smaller. They are binary stellar systems in our Galaxy in which a more or less normal star orbits a compact object, which may be a neutron star or a black hole. Those microquasars also show energetic outflows and signs of accretion of matter onto the compact object. Not unexpectedly, it appears that the most enigmatic of these systems are the ones that contain a black hole. The discovery of objects that are relatively nearby in cosmological terms and which mimic the properties of the remote quasars has opened up interesting new perspectives and promises to help us to better understand the strange phenomena that are associated with jets and accretion disks around black holes. GRS 1915+105 - A unique galactic laboratory The variable X-ray radiation has been interpreted as due to infall of matter onto the black hole from the inner region of a surrounding accretion disk. This enigmatic source was also observed to eject clouds of hot gas at velocities very close to the speed of light. GRS 1915+105 is thus a prototype microquasar and has become a main target for the study of accretion onto a black hole of stellar mass. GRS 1915+105 lies in the constellation Aquila (The Eagle) and is located near the main plane of the Milky Way Galaxy, some 40 000 light-years away from the Sun. A lot of gas and dust in that plane hides it from our view in the visible light. This obscuration has severely impeded any detailed investigation of the system, and it still remained to be proven whether or not it really contains a massive black hole. Identification of the binary companion The first set of observations was obtained with the multi-mode ISAAC instrument on the VLT 8.2-m ANTU telescope, already in the summer of 1999. The spectra were of very high quality and contained several spectral lines. In particular, a number of previously unnoticed spectral features from carbon monoxide molecules were securely identified. These lines are formed in the atmosphere of the star which revolves around the black hole and feeds it with matter (it is therefore known as the "donor star"). A high-quality infrared spectrum was needed to detect and measure these lines because only a small fraction of the light received actually comes from the binary star. Most of the light that is registered by the instrument comes from the surrounding accretion disk or from ejected matter in the neighbourhood, and therefore tends to hide the spectral lines of the donor star. After a careful analysis of the observed spectral lines, the astronomers were able to infer that the star donating matter to the compact object is a low-mass star, with about the same mass as our Sun. But this was only the beginning of this long-term observational programme. Seeing the motion The observational campaign started in April 2000 and continued until September 2000 with observations taken on 16 different nights. The velocity variations revealed by the line shifts were searched for periodicity and the best fit was found for a period of 33.5 days. This is interpreted as the time it takes for the donor star to orbit the compact object. From the orbital motion, it is then easy to deduce a lower limit on the mass of the compact object. In this way, it was shown that the invisible companion in GRS 1915+105 must in any case be heavier than 9.5 solar masses. The nature of the compact object However, the astronomers could do better than this - they were able to deduce not just a minimum, but also the actual mass of the black hole. First, knowing the nature of the donor star gives a good estimate of the mass of that star. Secondly, some constraints can be set on the inclination of the orbit from the known jet features. With this additional information, the astronomers finally concluded that the black hole must weigh as much as 14 solar masses. Until now, about a dozen black holes in the Galaxy have been confirmed by determining their masses in this way. GRS 1915+105 is the heaviest of the stellar black holes so far known in the Milky Way Galaxy. Implications and puzzles Another puzzling aspect regards the spin of the black hole. That some stellar black holes rotate has been suggested on several grounds. It is believed that when the black hole rotates in the same direction as does the accretion disk, the disk can extend much closer inwards towards the black hole. The result is a hotter disk. Two X-ray binaries are known to be very hot, GRS 1915+105 and Nova Scorpii, and it was therefore believed that these two contain black holes that must spin rapidly. A completely different line of evidence for black hole rotation comes from the quasi-periodic oscillations often seen in X-ray binaries. Those oscillations are generally interpreted as due to effects of the spinning black hole on the surrounding accretion disk, although the exact mechanism is a matter of debate. However, the new mass determination for the black hole in GRS 1915+105 indicates that the picture may not be as simple as that. In fact, if GRS 1915+105 and Nova Scorpii both have rapidly spinning black holes, none of the current theories for the quasi-periodic oscillations seem to work. And so, as is often the case in science, new information also brings new puzzles.
|
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|