|
||||
![]() |
![]() Dancing around black holes EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE Posted: August 15, 2001
A heavy black hole feeds agressively on its surroundings. When the neighbouring gas and stars finally spiral into the black hole, a substantial fraction of the infalling mass is transformed into pure energy. However, it is not yet well understood how, long before this dramatic event takes place, all that material is moved from the outer regions of the galaxy towards the central region. So how is the food for the central black hole delivered to the table in the first place? To cast more light on this central question, a team of French and Swiss astronomers has carried out a series of trailblazing observations with the VLT Infrared Spectrometer And Array Camera (ISAAC) on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory. The ISAAC instrument is particularly well suited to this type of observations. Visible light cannot penetrate the thick clouds of dust and gas in the innermost regions of active galaxies, but by recording the infrared light from the stars close to the black hole, their motions can be studied. By charting those motions in the central regions of three active galaxies (NGC 1097, NGC 1808 and NGC 5728), the astronomers were able to confirm the presence of "nuclear bars" in all three. These are dynamical structures that "open a road" for the flow of material towards the innermost region. Moreover, the team was surprised to discover signs of a young stellar population near the centres of these galaxies - stars that have apparently formed quite recently in a central gas disk. Such a system is unstable, however, and will soon disrupt. At some moment, many of those young stars may get too close to the monster in the centre and suffer an unhappy fate... Central black holes in galaxies Black holes have an extremely intense gravitational field and as light can not escape from them, they are dark and invisible. Indeed, with presently available observational tools, they cannot be detected directly, only by effects resulting from interaction with their immediate surroundings. A small fraction of the black holes in galaxies are thus revealed by the spectacular activity they trigger in the central part of their hosts. Attracted by that heavy object, enormous quantities of gas (mostly hydrogen) spiral inwards towards the black hole. A disk-shaped structure forms in which the gas moves ever faster around the black hole while enormous amounts of energy are radiated at all wavelengths. Getting the food to the black hole Various violent processes have been mentioned in this context, like the merger of galaxies. A fine example of such an event was recently observed at the distant quasar HE 1013-2136 with the ESO Very Large Telescope. The role of "nuclear bars"
Until now, nuclear bars have mostly been seen on detailed images as small, elongated structures embedded within the larger primary bars - such structures may ressemble a "Russian doll". In addition, nuclear bars have been detected indirectly due to their gravitational effects, by means of very accurate measurements of the motions of the gas in the central region in a few galaxies. A first observational campaign by a team of French and Swiss astronomers with the ESO Very Large Telescope (VLT) has now brought new, important insights about these nuclear bars. ISAAC spectra of innermost regions of three active galaxies Several galaxies with active centres were selected for the first observing runs in 1999 and 2000, among these NGC 1097, NGC 1808 and NGC 5728. Infrared spectra were obtained in the 2.3 µm wavelength region in which a number of molecular spectral bands are seen. They are caused by carbon monoxide (12CO) molecules in the atmospheres of the stars located near the centres of the galaxies. Stellar motions The comparison with the flight of a swarm of bees is useful: the mean velocity tells how fast the swarm moves forward as a whole - this is the ordered motion of the group. The second value instead indicates how much (or how fast) the individual bees move around inside the swarm - this is the spread in random velocities among the bees. Dynamical temperature is another concept defined by velocity dispersion. A warm gas is a gas where the molecules swarm around at high random speeds, while the molecules in a cold gas have low velocity dispersion. Astronomers often borrow this terminology and refer to stellar systems with low velocity dispersions as "dynamically cool systems". Confirming the "nuclear bars"... The ISAAC observations did confirm the presence of "nuclear bars" in NGC 1097, NGC 1808 and NGC 5728. They also showed that these bars are truly "decoupled" stellar systems - their motions are only determined by the mass distribution in that area. ...and discovering a "dynamically cool" stellar system! The project leader, Eric Emsellem explains: "Slower individual stellar motions correspond to a lower 'dynamical temperature' of the stellar system in this innermost region. We interpret this as evidence for a recent infall of gas that was induced by the nuclear bar. This has created a new gaseous disk at the centre of the galaxy, which has given birth to new stars. They all move around the black hole with more or less the same circular velocity as the gas from which they were born". Agreement between observations and models In these computer models, large numbers of "stars" (mass points) move in a model galaxy with both a large and a nuclear bar, as observed in the three galaxies. Herve Wozniak refers to them as "self-consistent N-body simulations" and explains why the team is enthusiastic: "When our models also include star formation in the gas in the central region, a new, "dynamically cool" component of young stars emerges and mixes with the old stellar population". He goes on: "The light from those young stars is superposed on that from the older ones in that area. Because of this, the overall "velocity dispersion" in the central region is then smaller than what it is further out. This is exactly as we observed in the ISAAC spectra obtained in the present programme". Eric Emsellem points out that such a "dynamically cold" system is unstable and cannot last very long. "Soon it will "heat up" due to complex dynamical processes. It is quite possible that some of these stars will eventually end up as food for the hungry black hole.." Prospects More active galaxies will now be observed with this method and it will be interesting to see if the presently discovered "cool" and young stellar systems represent a common phenomenon or not.
|
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
|||