|
||||
![]() |
![]() The glory of a nearby star EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE Posted: August 2, 2001
The Sun is a normal star and X-ray observations from rockets and orbiting X-ray telescopes have shown that many other stars also possess coronae. But due to observational limits of the telescopes available so far, the much fainter optical emission from stellar coronae had never been detected. Now, however, an optical coronal line from iron ions that have lost 12 electrons (Fe XIII) has for the first time been observed in a star other than the Sun. The object, a cool star named CN Leonis, is located at a distance of 8 light-years. This impressive observational feat was performed with the UV-Visual Echelle Spectrograph (UVES) on the VLT 8.2-m KUEYEN telescope at the ESO Paranal Observatory, within a programme by German astronomer Jürgen Schmitt and his collaborators at the University of Hamburg Observatory. The possibility to observe stellar coronae with ground-based telescopes opens up new and exciting research opportunities, including the detailed study of stellar cycles, similar to the 11-year solar period. The 'coronium' mystery Some 130 years earlier, during a total solar eclipse on August, 7, 1869, American astronomers William Harkness and Charles Young observed a weak spectral emission line from the solar corona in the green region of the spectrum; it was visible for a couple of minutes. However, despite an enormous amount of work, both at the telescope during subsequent eclipses and in the laboratory, this emission line could not be attributed to any known chemical element. As the years passed, the mystery of the origin of this emission line deepened and some astronomers went as far as introducing an entirely new element named 'coronium'. As better instruments became available, more coronal lines were seen during later solar eclipses. A hot corona The successful identification created, however, another puzzle: in order to strip iron atoms of half of their electrons, temperatures of more than one million degrees are required, yet the temperature of the surface of the Sun is only of the order of 5500 °C! The astronomers in the 1940's were well aware that the Sun's energy is produced in the interior and that heat flows outwards from hotter to cooler regions. So how could there be a much hotter corona above the cooler photosphere? Since then, much research effort has been aimed at understanding the transport of energy in the solar atmosphere and it appears that several mechanisms play a role, including magnetic and other effects. Nevertheless, a full and detailed explanation of the high temperature of the solar corona is still outstanding. X-rays from the solar and stellar coronae The Sun is a quite normal star and other stars therefore ought to possess coronae as well. Still, it took nearly 30 years until X-ray emission from other normal stars was finally detected. While X-rays from several distant objects (including the Crab Nebula, the Galactic Centre and the quasar 3C273) were discovered during the 1960's, it was only in 1975 that X-rays were registered from the bright, normal star Capella (Alpha Aurigae) during a rocket flight to study other X-ray sources. In fact, this discovery was accidental, as Capella happened to be used as a 'guide star' while the pointing direction of the rocket was "hopping" from one object to the next. Quite surprisingly, Capella was found to be a very strong emitter of X-rays, corresponding to an intrinsic level of more than 1000 times that of the solar corona. This discovery laid the foundation for the subsequent detection of X-ray emission from tens of thousand of stars by means of X-ray satellites, e.g., by the Einstein Observatory and especially by ROSAT. All these observations showed that stellar coronae must be a very common phenomenon. Observation of stellar coronal lines This may be easy to say, but it is much harder to do. The main problem is the same as when observing the solar corona. The solar coronal emission lines in the visible region of the spectrum are always observed above the solar limb. If one were to try to detect these weak lines in front of the solar disk, they would "drown" in the strong background light from the solar 'surface' (the photosphere). The original discovery of coronal emission in 1869 was indeed obtained during a solar eclipse, when this strong light is completely blocked out by the Moon. However, current telescopes are unfortunately unable to block out the light from a stellar disk in a similar way in order to make its corona visible; the angular size of the disk is too small and the positional accuracy needed for such an observation is too high for it to be feasible with present techniques. The only way forward is then a direct attempt to detect the faint coronal emission against the much higher background of the stellar disk - and that is exactly why a very large telescope is needed for such an observational feat. Selecting the target star: CN Leonis
UVES detects a coronal line in the visible spectral region When first inspecting the spectrum of CN Leonis, Jurgen Schmitt was hopeful: "We saw a strong line, right at the proper location!" But then, he explains, "we soon learned that life is never as easy as expected... that line had a rather strange appearance and something seemed to be wrong". Indeed, the early investigation showed that this line feature might be attributed to emission by singly ionised titanium atoms (Ti+ or Ti II), located in a lower atmospheric layer (the 'chromosphere') and not in the corona of CN Leo. However, a subsequent, very careful study definitively proved the presence of the hoped-for coronal emission line. The titanium line is produced at lower temperatures than those that reign in the corona, and the individual velocities of the titanium ions are thus much slower than those of the iron ions in the corona. The broadening of the titanium line, introduced by the Doppler effect (the combined lineshifts by all ions), must therefore be much less. The titanium line must accordingly be much more narrow than any coronal line. Many other titanium emission lines are visible in the UVES spectrum, and the common width of these lines can be determined with high accuracy. It turns out to be much less than the observed width of the line seen at 3388 Angstrom, and that line can therefore not be due to titanium alone. And indeed, when 'subtracting' the contribution from the narrow titanium line, an underlying, much broader line emerges and becomes well visible -- it is indeed the coronal emission line from 12 times ionised iron (Fe XIII). This is the first time a stellar coronal line has been unambiguously observed in the optical part of the spectrum. Prospects Thus, it is now feasible to use the superb capabilities of ground-based instrumentation which has much higher spectral resolving power than currently available X-ray spectrometers. With the new tools at large telescopes like the VLT, the astronomers may embark on detailed studies of the dynamics of stellar coronae. They will then also be able to watch the expected changes in the emission levels of other stars, similar to the well-known 11-year cycle of the Sun. Eventually, they may also obtain images of stellar chromospheres and coronae.
|
![]() |
![]() |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|||