|
||||
![]() |
![]() A glimpse of web-like structures in early Universe EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE Posted: May 22, 2001 New, trailblazing observations with the ESO Very Large Telescope (VLT) at Paranal lend strong support to current computer models of the early universe: It is "spongy", with galaxies forming along filaments, like droplets along the strands of a spiders web. A group of astronomers at ESO and in Denmark determined the distances to some very faint galaxies in the neighborhood of a distant quasar. Plotting their positions in a three-dimensional map, they found that these objects are located within a narrow "filament", exactly as predicted by the present theories for the development of the first structures in the young universe.
This observation shows a very useful way forward for the study of the early evolution of the universe and the emergence of structures soon after the Big Bang. At the same time, it provides yet another proof of the great power of the new class of giant optical telescopes for cosmological studies. Computers are ahead of telescopes This has made it possible to predict what the universe might look like when it was still young. And working the opposite way, a comparison between the computer models and the real world might then provide some information about the initial conditions. Unfortunately, until recently astronomical telescopes were not sufficiently powerful to directly study the "real world" of the young universe by observing in detail the extremely faint objects at that early epoch, and thereby to test the predictions. Now, however, the advent of giant telescopes of the 8-10 metre class has changed this situation and a group of astronomers has used the ESO Very Large Telescope (VLT) at Paranal Observatory (Chile) to view a small part of the early cosmic structure. The telescopes have begun to catch up with the computer simulations. First structures of the Universe The first galaxies or rather, the first galaxy building blocks, will form inside the threads of the web. When they start emitting light, they will be seen to mark out the otherwise invisible threads, much like beads on a string. In the course of millions and billions of years, those early galaxies will stream along these threads, towards and into the "nodes". This is where galaxy clusters will later be formed. During this process the structure of the universe slowly changes. From being dominated by filaments, it becomes populated by large clusters of galaxies that are still connected by "bridges" and "walls", the last remains of the largest of the original filaments. The Lyman-alpha spectral line Hydrogen was formed during the Big Bang some 15 billion years ago and is by far the most common element in the universe. When stars are formed by contraction inside a large and compact clump of hydrogen in space, the surrounding hydrogen cloud will absorb the ultraviolet light from the newborn stars, and this cloud will soon start to glow. This glow is mostly emitted at a single wavelength at 121.6 nm (1216 Å), the "Lyman-alpha" emission line of hydrogen. This wavelength is in the ultraviolet part of the spectrum to which the terrestrial atmosphere is totally opaque. Accordingly, the Lyman-alpha emission can normally not be observed by ground-based telescopes. However, if a very distant hydrogen cloud emits Lyman-alpha radiation, then this spectral line will be red-shifted from the ultraviolet into the blue, green or red region of the spectrum. For this reason, observations with large ground-based telescopes of Lyman-alpha radiation can be used to identify faint objects forming inside the high-redshift filaments. The team refers to such objects as the LEGO-blocks of cosmology ("Lyman-alpha Emitting Galaxy-building Objects"). VLT confirms the predictions
The images were obtained through a special optical filter that only allows light in a narrow spectral waveband to pass. The astronomers chose this wavelength to coincide with that of the Lyman-alpha emission line redshifted to z = 3.04, i.e. 490 nm in the green spectral region. Lyman-alpha radiation from objects at the distance of the quasar - and thus, at nearly the same redshift - will pass through this optical filter. When these images are combined with other deep images taken through much wider red and blue filters, the Lyman-alpha emitting objects at redshift 3.04 will show up as small, intensely green objects, while most other objects in the field will appear in various shades of red, blue and yellow (photo above). The spatial distribution of the galaxies
Implications of this discovery The most important ingredient in the cosmological models is the dark matter that is believed to contribute about 95% of the mass of the universe. The present confirmation of the predictions of the models therefore also indirectly confirms that it is the dark matter that controls the formation of structures in the universe. However, there is still a long way to go before it will be possible to make a more detailed comparison between observations and predictions! Asked about what they consider the most important consequence of their observations, the team responds: "We have shown that we now have an observational method with which we may study the cosmic web in the early universe, and the VLT is a great tool for such studies. The way forward is now pretty clear - we just have to find those faint and distant LEGOs and then do the spectral observations from which we may determine how they are distributed in space".
|
![]() |
![]() |
![]() |
Hubble poster![]() MORE ![]() ![]() ![]() ![]() ![]() ![]() |
||||