Spaceflight Now: Breaking News

Chandra observatory maps cosmic pressure fronts
NASA NEWS RELEASE
Posted: March 2, 2000

  Chandra image
For the first time, the pressure fronts in the system can be traced in detail, and they show a bright but relatively cool 50 million degree central region (white) embedded in large elongated cloud of 70 million degree gas (magenta), all of which is roiling in a faint "atmosphere" of 100 million degree gas (faint magenta and dark blue). Abell 2142 is six million light years across and contains hundreds of galaxies and enough gas to make a thousand more. It is one of the most massive objects in the universe. Galaxy clusters grow to vast sizes as smaller clusters are pulled inward under the influence of gravity. They collide and merge over the course of billions of years, releasing tremendous amounts of energy that heats the cluster gas. The smoothness of the elongated cloud in the Chandra image suggests that these sub-clusters collided two or three times in a billion years or more, and have nearly completed their merger. Photo: NASA/CXC/SAO
 
A colossal cosmic "weather system" produced by the collision of two giant clusters of galaxies has been imaged by NASA's Chandra X-ray Observatory. For the first time, the pressure fronts in the system can be traced in detail, and they show a bright but relatively cool 50 million degree central region embedded in a large elongated cloud of 70 million degree gas, all of which is roiling in a faint "atmosphere" of 100 million degree gas.

"We can compare this to an intergalactic cold front," said Maxim Markevitch of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., and leader of the international team involved in the analysis of the observations. "A major difference is that in this case, cold means 70 million degrees."

The gas clouds are in the core of a galaxy cluster known as Abell 2142. The cluster is six million light years across and contains hundreds of galaxies and enough gas to make a thousand more. It is one of the most massive objects in the universe. Galaxy clusters grow to vast sizes as smaller clusters are pulled inward under the influence of gravity. They collide and merge over the course of billions of years, releasing tremendous amounts of energy that heats the cluster gas to 100 million degrees.

The Chandra data provides the first detailed look at the late stages of this merger process. Previously, scientists had used the German-US Roentgen satellite to produce a broad brush picture of the cluster. The elongated shape of the bright cloud suggested that two clouds were in the process of coalescing into one, but the details remained unclear. Chandra is able to measure variations of temperature, density and pressure with unprecedented resolution.

"Now we can begin to understand the physics of these mergers, which are among the most energetic events in the universe," said Markevitch. "The pressure and density maps of the cluster show a sharp boundary that can only exist in the moving environment of a merger."

Chandra
An artist's concept of NASA's Chandra X-ray Observatory in space. Photo: NASA
 
 
With this information scientists can make a comparison with computer simulations of cosmic mergers. This comparison, which is in the early stages, shows that this merger has progressed to an advanced stage. Strong shock waves predicted by the theory for the initial collision of clusters are not observed. It appears likely that these sub-clusters have collided two or three times in a billion years or more, and have nearly completed their merger.

The observations were made on August 20, 1999 using the Advanced CCD Imaging Spectrometer (ACIS). The team involved scientists from Harvard-Smithsonian; the Massachusetts Institute of Technology, Cambridge, Mass.; NASA's Marshall Space Flight Center, Huntsville, Ala.; the University of Hawaii, Honolulu; the University of Birmingham, U.K.; the University of Wollongong, Australia; the Space Research Organization Netherlands; the University of Rome, Italy; and the Russian Academy of Sciences. The results will be published in an upcoming issue of the Astrophysical Journal.

The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, Mass., and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.


Earlier coverage
Cosmic bar code - blanket of warm gas found expanding from giant black hole. [Feb. 22, 2000]

Starburst galaxy - the core of the nearest starburst galaxy is a seething cauldron. [Jan. 17, 2000]

Ashes of exploded star - expanding ring-like structure of oxygen and neon found from a massive star. [Jan. 16, 2000]

Star bonanza - richest field of X-ray sources found in the Orion Nebula. [Jan. 16, 2000]

Explosive galaxy - giant galaxy reacts to being dumped on. [Nov. 18, 1999]

Diamond ring surrounds Crab Pulsar - spectacular image of the heart of the Crab Nebula. [Sept. 28, 1999]

First images from Chandra - NASA unveils the first pictures. [Aug. 26, 1999]

NASA's Chandra X-ray Observatory checkout continues - the telescope door opens. [Aug. 9, 1999]

Chandra reaches final orbit - observatory makes fifth and final thruster firing. [Aug. 7, 1999]

STS-93 Mission Report - read our full report on space shuttle Columbia's mission to deploy the Chandra X-ray Observatory.


Explore the net
Chandra X-ray Observatory News - the latest from NASA's Marshall Space Flight Center newsroom.

Chandra X-ray Observatory Center - based at the Harvard-Smithsonian Center for Astrophysics.

The Chandra Chronicles - online newsletter about the Chandra observatory.

NewsAlert
Sign up for Astronomy Now's NewsAlert service and have the latest news in astronomy and space e-mailed directly to your desktop (free of charge).

Your e-mail address: