Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Spirit panorama
This amazing panorama of the martian surface at Columbia Hills was taken by the Spirit rover. Expert narration is provided by camera scientist Jim Bell. (2min 12sec file)
 Play video

Update on Mars rovers
Mars Exploration Rover project manager Jim Erickson and panoramic camera lead scientist Jim Bell offer comments on the status of the Spirit and Opportunity missions (1min 33sec file)
 Play video

Delta rocket assembly
The first stage of Boeing's Delta 2 rocket that will launch NASA's Swift gamma-ray burst detection observatory in November is erected on pad 17A at Cape Canaveral, Florida. (4min 52sec file)
 Play video

Solid boosters arrive
The three solid-fueled rocket boosters for the Boeing Delta 2 vehicle that will launch the Swift satellite are hoisted into the pad 17A mobile service tower. (4min 55sec file)
 Play video

SRBs go for attachment
The mobile service tower carries the solid boosters into position for attachment to the Delta 2 rocket's first stage. (3min 08sec file)
 Play video

Swift nose cone
The two halves of the 10-foot diameter rocket nose cone that will enclose NASA's Swift satellite during launch aboard a Boeing Delta 2 vehicle are lifted into the pad 17A tower. (4min 26sec file)
 Play video

ISS talk with students
The International Space Station crew holds an educational event to answers questions live with students at the Maryland Science Center. (24min 01sec file)
 Play video

Genesis to Houston
The solar wind samples retrieved by NASA's Genesis spacecraft finally arrive at Johnson Space Center facilities from the Utah landing site. (2min 51sec file)
 Play video

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Mars rovers probing more water history at two sites
MISSION CONTROL STATUS REPORT
Posted: October 7, 2004

NASA's Spirit and Opportunity have been exploring Mars about three times as long as originally scheduled. The more they look, the more evidence of past liquid water on Mars these robots discover.


This approximate true-color image taken by Opportunity shows an unusual, lumpy rock informally named "Wopmay" on the lower slopes of "Endurance Crater." Credit: NASA/JPL/Cornell
Download a larger version here

 
New findings raise the possibility Opportunity's work area was soaked long ago, before it dried and eroded into a wide plain. There are also signs some rocks may have gotten wet again, after an impact excavated a stadium-size crater in the plain.

Evidence of this exciting possibility has been identified in a flat rock dubbed "Escher" and some neighboring rocks near the bottom of the crater. These plate-like rocks bear networks of cracks dividing the surface into patterns of polygons, somewhat similar in appearance to cracked mud after the water has dried up here on Earth.

Alternative histories, such as fracturing by the force of the crater-causing impact, or the final desiccation of the original wet environment that formed the rocks, might also explain the polygonal cracks. Rover scientists hope a lumpy boulder nicknamed "Wopmay," Opportunity's next target for inspection, may help narrow the list of possible explanations.

"When we saw these polygonal crack patterns, right away we thought of a secondary water event significantly later than the episode that created the rocks," said Dr. John Grotzinger. He is a rover-team geologist from the Massachusetts Institute of Technology, Cambridge, Mass. Finding geological evidence about watery periods in Mars' past is the rover project's main goal, because such persistently wet environments may have been hospitable to life.

"Did these cracks form after the crater was created? We don't really know yet," Grotzinger said.

If they did, one possible source of moisture could be accumulations of frost partially melting during climate changes, as Mars wobbled on its axis of rotation, in cycles of tens of thousands of years. According to Grotzinger, another possibility could be the melting of underground ice or release of underground water in large enough quantity to pool a little lake within the crater.

One type of evidence Wopmay could add to the case for wet conditions after the crater formed would be a crust of water-soluble minerals. After examining that rock, the rover team's plans for Opportunity are to get a close look at a tall stack of layers nicknamed "Burns Cliff" from the base of the cliff. The rover will then climb out of the crater and head south to the spacecraft's original heat shield and nearby rugged terrain, where deeper rock layers may be exposed.

Halfway around Mars, Spirit is climbing higher into the "Columbia Hills." Spirit drove more than three kilometers (approximately two miles) across a plain to reach them. After finding bedrock that had been extensively altered by water, scientists used the rover to look for relatively unchanged rock as a comparison for understanding the area's full range of environmental changes. Instead, even the freshest-looking rocks examined by Spirit in the Columbia Hills have shown signs of pervasive water alteration.


This stunning image mosaic of the "Columbia Hills" is the first 360-degree panorama taken since Spirit arrived at the hills over a month ago. The rover has been busy studying the rocks here, which show evidence of past alteration by water. The dark patch of soil to the right is the spot where Spirit stopped for engineering work on its right front wheel. Spirit's tracks can be followed from there all the way back to "Bonneville Crater" and the original landing site, more than 1.86 miles away. Credit: NASA/JPL/Cornell
Download a medium version here | Download a larger version here

 
"We haven't seen a single unaltered volcanic rock, since we crossed the boundary from the plains into the hills, and I'm beginning to suspect we never will," said Dr. Steve Squyres of Cornell University, Ithaca, N.Y., principal investigator for the science payload on both rovers. "All the rocks in the hills have been altered significantly by water. We're having a wonderful time trying to work out exactly what happened here."

More clues to deciphering the environmental history of the hills could lie in layered rock outcrops farther upslope, Spirit's next targets. "Just as we worked our way deeper into the Endurance crater with Opportunity, we'll work our way higher and higher into the hills with Spirit, looking at layered rocks and constructing a plausible geologic history," Squyres said.

Jim Erickson, rover project manager at JPL, said, "Both Spirit and Opportunity have only minor problems, and there is really no way of knowing how much longer they will keep operating. However we are optimistic about their conditions, and we have just been given a new lease on life for them, a six-month extended mission that began Oct. 1. The solar power situation is better than expected, but these machines are already well past their design life. While they're healthy, we'll keep them working as hard as possible."

JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover project for NASA's Science Mission Directorate, Washington.

Spaceflight Now Plus
Additional coverage for subscribers:
VIDEO: NEW PANORAMA FROM COLUMBIA HILLS WITH NARRATION QT
VIDEO: UPDATE FROM ROVER PROJECT OFFICIALS QT
SUBSCRIBE NOW