Spaceflight Now Home



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

Phoenix update

Scientists report on the progress of the Phoenix lander exploring the northern plains of Mars during this Sept. 29 update.

 Play

Two shuttles sighted

Stunning aerial views of shuttles Atlantis and Endeavour perched atop launch pads 39A and 39B on Sept. 20.

 Play | Hi-Def

Endeavour to pad 39B

Space shuttle Endeavour made the journey from Kennedy Space Center to pad 39B in the predawn hours of Sept. 19.

 Play | Hi-Def

MAVEN to Mars

NASA has selected the Mars Atmosphere and Volatile Evolution spacecraft, or MAVEN, for launch to the Red Planet.

 Play

Endeavour to the VAB

For its role as a rescue craft during the Hubble servicing mission and the scheduled November logistics run to the space station, Endeavour is moved to the Vehicle Assembly Building.

 Play

STS-125: The mission

A detailed step-by-step preview of space shuttle Atlantis' STS-125 mission to extend the life and vision of the Hubble Space Telescope.

 Play

STS-125: The EVAs

The lead spacewalk officer provides indepth explanations of the five EVAs to service Hubble during Atlantis' flight.

 Play

STS-125: The crew

The seven shuttle Atlantis astronauts hold a press conference one month before their planned launch to Hubble.

 Play

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Sharpening up Jupiter
EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE
Posted: October 2, 2008

A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago.


Credit: ESO/F. Marchis, M. Wong, E. Marchetti, P. Amico, S. Tordo
See a larger image here

 
Being able to correct wide field images for atmospheric distortions has been the dream of scientists and engineers for decades. The new images of Jupiter prove the value of the advanced technology used by MAD, which uses two or more guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques.

"This type of adaptive optics has a big advantage for looking at large objects, such as planets, star clusters or nebulae," says lead researcher Franck Marchis, from UC Berkeley and the SETI Institute in Mountain View, California, USA. "While regular adaptive optics provides excellent correction in a small field of view, MAD provides good correction over a larger area of sky. And in fact, were it not for MAD, we would not have been able to perform these amazing observations."

MAD allowed the researchers to observe Jupiter for almost two hours on 16 and 17 August 2008, a record duration, according to the observing team. Conventional adaptive optics systems using a single Jupiter moon as reference cannot monitor Jupiter for so long because the moon moves too far from the planet. The Hubble Space Telescope cannot observe Jupiter continuously for more than about 50 minutes, because its view is regularly blocked by the Earth during Hubble's 96-minute orbit.

Using MAD, ESO astronomer Paola Amico, MAD project manager Enrico Marchetti and Sébastien Tordo from the MAD team tracked two of Jupiter's largest moons, Europa and Io ­ one on each side of the planet ­ to provide a good correction across the full disc of the planet. "It was the most challenging observation we performed with MAD, because we had to track with high accuracy two moons moving at different speeds, while simultaneously chasing Jupiter," says Marchetti.

With this unique series of images, the team found a major alteration in the brightness of the equatorial haze, which lies in a 16 000-kilometre wide belt over Jupiter's equator. More sunlight reflecting off upper atmospheric haze means that the amount of haze has increased, or that it has moved up to higher altitudes. "The brightest portion had shifted south by more than 6000 kilometres," explains team member Mike Wong.

This conclusion came after comparison with images taken in 2005 by Wong and colleague Imke de Pater using the Hubble Space Telescope. The Hubble images, taken at infrared wavelengths very close to those used for the VLT study, show more haze in the northern half of the bright Equatorial Zone, while the 2008 VLT images show a clear shift to the south.

"The change we see in the haze could be related to big changes in cloud patterns associated with last year's planet-wide upheaval, but we need to look at more data to narrow down precisely when the changes occurred," declares Wong.