Spaceflight Now Home



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

Phoenix update

Scientists report on the progress of the Phoenix lander exploring the northern plains of Mars during this Sept. 29 update.

 Play

Two shuttles sighted

Stunning aerial views of shuttles Atlantis and Endeavour perched atop launch pads 39A and 39B on Sept. 20.

 Play | Hi-Def

Endeavour to pad 39B

Space shuttle Endeavour made the journey from Kennedy Space Center to pad 39B in the predawn hours of Sept. 19.

 Play | Hi-Def

MAVEN to Mars

NASA has selected the Mars Atmosphere and Volatile Evolution spacecraft, or MAVEN, for launch to the Red Planet.

 Play

Endeavour to the VAB

For its role as a rescue craft during the Hubble servicing mission and the scheduled November logistics run to the space station, Endeavour is moved to the Vehicle Assembly Building.

 Play

STS-125: The mission

A detailed step-by-step preview of space shuttle Atlantis' STS-125 mission to extend the life and vision of the Hubble Space Telescope.

 Play

STS-125: The EVAs

The lead spacewalk officer provides indepth explanations of the five EVAs to service Hubble during Atlantis' flight.

 Play

STS-125: The crew

The seven shuttle Atlantis astronauts hold a press conference one month before their planned launch to Hubble.

 Play

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Orbiter reveals rock fracture plumbing on Mars
NASA/JPL NEWS RELEASE
Posted: September 30, 2008

PASADENA, Calif. -- NASA's Mars Reconnaissance Orbiter has revealed hundreds of small fractures exposed on the Martian surface that billions of years ago directed flows of water through underground Martian sandstone.


Dense clusters of crack-like structures called deformation bands form the linear ridges prominent in this image from the HiRISE camera on Mars Reconnaissance Orbiter. Credit: NASA/JPL-Caltech/Univ. of Arizona
 
Researchers used images from the spacecraft's High Resolution Imaging Science Experiment, or HiRISE, camera. Images of layered rock deposits at equatorial Martian sites show the clusters of fractures to be a type called deformation bands, caused by stresses below the surface in granular or porous bedrock.

"Groundwater often flows along fractures such as these, and knowing that these are deformation bands helps us understand how the underground plumbing may have worked within these layered deposits," said Chris Okubo of the U.S. Geological Survey in Flagstaff, Ariz.

Visible effects of water on the color and texture of rock along the fractures provide evidence that groundwater flowed extensively along the fractures.

"These structures are important sites for future exploration and investigations into the geological history of water and water-related processes on Mars," Okubo and co-authors state in a report published online this month in the Geological Society of America Bulletin.

Deformation band clusters in Utah sandstones, as on Mars, are a few yards wide and up to a few miles long. They form from either compression or stretching of underground layers, and can be precursors to faults. The ones visible at the surface have become exposed as overlying layers erode away. Deformation bands and faults can strongly influence the movement of groundwater on Earth and appear to have been similarly important on Mars, according to this study.

"This study provides a picture of not just surface water erosion but true groundwater effects widely distributed over the planet," said Suzanne Smrekar, deputy project scientist for the Mars Reconnaissance Orbiter at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Ground water movement has important implications for how the temperature and chemistry of the crust have changed over time, which in turn affects the potential for habitats for past life."

The recent study focuses on layered deposits in Mars' Capen crater, approximately 43 miles in diameter and 7 degrees north of the equator. This formerly unnamed crater became notable due to this discovery of deformation bands within it and was recently assigned a formal name. The crater was named for the late Charles Capen, who studied Mars and other objects as an astronomer at JPL's Table Mountain Observatory in southern California and at Lowell Observatory, Flagstaff, Ariz.

The HiRISE camera is one of six science instruments on the orbiter. It can reveal smaller details on the surface than any previous camera to orbit Mars. The orbiter reached Mars in March 2006 and has returned more data than all other current and past missions to Mars combined.

The mission is managed by JPL for NASA's Science Mission Directorate. Lockheed Martin Space Systems of Denver built the spacecraft. The University of Arizona operates the HiRISE camera, built by Ball Aerospace and Technology Corp. of Boulder, Colo.