Spaceflight Now Home



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

Meet the Hubble crew

Meet the crew launching on Atlantis' STS-125 mission to service the Hubble Space Telescope and learn how each became an astronaut in this special biography movie.

 Play

Phoenix update

Scientists report on the progress of the Phoenix lander exploring the northern plains of Mars during this July 31 update.

 Briefing | Panorama

Expedition 18 crew

The American, Russian and Japanese crewmembers to serve aboard the space station during various stages of the Expedition 18 mission, plus spaceflight participant Richard Garriott hold this pre-flight news conference.

 Play

STS-94: Rapid re-flight

Three months after their 1997 flight was cut short by a fuel cell problem, the same seven astronauts returned to space aboard shuttle Columbia to fulfill the Spacelab science mission. The STS-94 crew tells the story in this post-flight presentation.

 Play

STS-124: In review

The STS-124 crew narrates highlights from its mission that delivered Japan's Kibo lab module to the station.

 Full presentation
 Mission film

Jason 2 launch

A ULA Delta 2 rocket launched the Jason 2 oceanography satellite from Vandenberg Air Force Base on June 20.

 Full Coverage

Jason 2 preview

The joint American and European satellite project called Jason 2 will monitor global seal levels.

 Mission | Science

STS-124 space shuttle mission coverage

Extensive video collection covering shuttle Discovery's mission to deliver the Japanese Kibo science lab to the station is available in the archives.

 Full Coverage

Phoenix lands on Mars

The Phoenix spacecraft arrived at Mars on May 25, safely landing on the northern plains to examine the soil and water ice.

 Full Coverage

STS-82: In review

The second servicing of the Hubble Space Telescope was accomplished in Feb. 1997 when the shuttle astronauts replaced a pair of instruments and other internal equipment on the observatory.

 Play

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Origin of Crab Nebula's high-energy emission located
EUROPEAN SPACE AGENCY NEWS RELEASE
Posted: September 2, 2008

Thanks to data from ESA's Integral gamma-ray observatory, scientists have been able to locate where particles in the vicinity of the rotating neutron-star in the Crab Nebula are accelerated to immense energies.

The discovery put in place another piece of the puzzle in understanding how neutron stars work.


Credits: NASA/CXC/ASU/J. Hester et al.(for the Chandra image); NASA/HST/ASU/J. Hester et al. (for the Hubble image)
 
Rotating neutron-stars, or 'pulsars', are known to accelerate particles to enormous energies, typically one hundred times more than the most powerful accelerators on Earth, but scientists are still uncertain exactly how these systems work and where the particles are accelerated.

A step forward in this understanding is now accomplished thanks to a team of researchers from the UK and Italy, led by Professor Tony Dean of the University of Southampton, who studied high-energy polarised light emitted by the Crab Nebula - one of the most dramatic sights in deep space.  

The Crab Nebula is the result of a supernova explosion which was seen from Earth on 4 July 1054. The explosion left behind a pulsar with a nebula of radiating particles around it. The pulsar contains the mass of the Sun squeezed into a volume of about 10 km radius, rotating very fast - about 30 times a second - thereby generating very powerful magnetic fields and accelerating particles. A highly collimated jet, aligned with the spin axis of the pulsar and a bright radiating Œdonut' structure (or torus) around the pulsar itself, are also seen.

So, the Crab is known to accelerate electrons - and possibly other particles - to extremely high speed, and so produces high energy radiation. But where exactly are these particles accelerated?

Looking into the heart of the pulsar with Integral's spectrometer (SPI), the researchers made a detailed study to assess the polarisation - or the alignment - of the waves of high-energy radiation originating from the Crab.

They used data from more than 600 individual observations of the nebula, and saw that this polarised radiation is highly aligned with the rotation axis of the pulsar. So they concluded that a significant portion of the electrons generating the high-energy radiation must originate from a highly organised structure located very close to the pulsar, very likely directly from the jets themselves. The discovery allows the researchers to discard other theories that locate the origin of this radiation further away from the pulsar.

Professor Tony Dean of the University's School of Physics and Astronomy commented that the discovery of such alignment - also matching with the polarisation observed in the visible band - is truly remarkable. "The findings have clear implications on many aspects of high energy accelerators such as the Crab," he added.

"The detection of polarised radiation in space is very complicated and rare, as it requires dedicated instrumentation and an in-depth analysis of very complex data", said Chris Winkler, Integral Project Scientist at ESA. "Integral's ability to detect polarised gamma-radiation and, as a consequence, to obtain important results like this one, confirms it once more as a world-class observatory."