Spaceflight Now Home



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

Riding on Endeavour

Now you can take a virtual trip aboard shuttle Endeavour's recent launch thanks to video cameras mounted inside the ship's cockpit as well as outside on the twin solid rocket boosters and external tank.

 Full Coverage

Launch of Phoenix

The Phoenix lander bound for the northern plains of Mars is launched atop a Delta 2 rocket from Cape Canaveral.

 Full coverage

Phoenix animation

Project officials narrate animation of Phoenix's launch from Earth, arrival at Mars, touchdown using landing rockets and the craft's robot arm and science gear in action.

 Play

"The Time of Apollo"

This stirring 1970s documentary narrated by Burgess Meredith pays tribute to the grand accomplishments of Apollo as men left Earth to explore the Moon and fulfill President Kennedy's challenge to the nation.

 Play

"Apollo 17: On The Shoulders of Giants"

Apollo's final lunar voyage is relived in this movie. The film depicts the highlights of Apollo 17's journey to Taurus-Littrow and looks to the future Skylab, Apollo-Soyuz and shuttle programs.

 Play

"Apollo 10: To Sort Out The Unknowns"

The May 1969 mission of Apollo 10 served as a final dress rehearsal before the first lunar landing later that summer. Stafford, Young and Cernan went to the moon to uncover lingering spacecraft problems that needed to be solved.

 Play

Traveling on Freedom 7

Fly with Alan Shepard during his historic journey into space with this documentary that takes the viewer along as an invisible companion to America's first astronaut.

 Play

Become a subscriber
More video



Scientists find elusive waves in Sun's corona
NCAR NEWS RELEASE
Posted: September 2, 2007

BOULDER -- Scientists for the first time have observed elusive oscillations in the Sun's corona, known as Alfven waves, that transport energy outward from the surface of the Sun. The discovery is expected to give researchers more insight into the fundamental behavior of solar magnetic fields, eventually leading to a fuller understanding of how the Sun affects Earth and the solar system.


Credit: Steve Tomczyk and Scott McIntosh, NCAR.)
 
The research, led by Steve Tomczyk of the National Center for Atmospheric Research (NCAR), is being published this week in Science.

"Alfven waves can provide us with a window into processes that are fundamental to the workings of the Sun and its impacts on Earth," says Tomczyk, a scientist with NCAR's High Altitude Observatory.

Alfven waves are fast-moving perturbations that emanate outward from the Sun along magnetic field lines, transporting energy. Although they have been detected in the heliosphere outside the Sun, they have never before been viewed within the corona, which is the outer layer of the Sun's atmosphere. Alfven waves are difficult to detect partly because, unlike other waves, they do not lead to large-intensity fluctuations in the corona. In addition, their velocity shifts are small and not easily spotted.

"Our observations allowed us to unambiguously identify these oscillations as Alfven waves," says coauthor Scott McIntosh of the Southwest Research Institute in Boulder. "The waves are visible all the time and they occur all over the corona, which was initially surprising to us."

Insights into the Sun

By tracking the speed and direction of the waves, researchers will be able to infer basic properties of the solar atmosphere, such as the density and direction of magnetic fields. The waves may provide answers to questions that have puzzled physicists for generations, such as why the Sun's corona is hundreds of times hotter than its surface.

The research also can help scientists better predict solar storms that spew thousands of tons of magnetized matter into space, sometimes causing geomagnetic storms on Earth that disrupt sensitive telecommunications and power systems. By learning more about solar disruptions, scientists may be able to better protect astronauts from potentially dangerous levels of radiation in space.

"If we want to go to the moon and Mars, people need to know what's going to happen on the Sun," Tomczyk says.

A powerful instrument

To observe the waves, Tomczyk and his coauthors turned to an instrument developed at NCAR over the last few years. The Coronal Multichannel Polarimeter, or CoMP, uses a telescope at the National Solar Observatory in Sacramento Peak, New Mexico, to gather and analyze light from the corona, which is much dimmer than the Sun itself. It tracks magnetic activity around the entire edge of the Sun and collects data with unusual speed, making a measurement as frequently as every 15 seconds.

The instrument enabled the research team to simultaneously capture intensity, velocity, and polarization images of the solar corona. Those images revealed propagating oscillations that moved in trajectories aligned with magnetic fields, and traveled as fast as nearly 2,500 miles per second.

In addition to Tomczyk and McIntosh, the research team included scientists from the National Solar Observatory, University of Notre Dame, Framingham High School in Massachusetts, University of Michigan, and NCAR.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under primary sponsorship by the National Science Foundation. Opinions, findings, conclusions, or recommendations expressed in this release are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.