Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Running the Boston Marathon in space
NASA astronaut Suni Williams will run the Boston Marathon on a treadmill aboard the International Space Station. To preview the event, Williams, an accomplished marathoner, and Expedition 14 commander Michael Lopez-Alegria talk with The Boston Globe and the New England Sports Network.

 Play

Exercising on ISS
International Space Station Expedition 14 commander Michael Lopez-Alegria and flight engineer Suni Williams give a show-and-tell about the exercise equipment and routines aboard the orbiting complex.

 Play

STS-57: EURECA retrieved
After nearly a year in space, the European Retrievable Carrier (EURECA) satellite was plucked from orbit and stowed aboard Endeavour for return to Earth during STS-57. The June 1993 mission also featured the first flight of the commercial Spacehab module outfitted with a range of microgravity experiments for the crew to use. A spacewalk to demonstrate working on the end of the shuttle robot arm was performed as well.

 Play

STS-56: Sun and Earth
Working in two shifts around the clock, the astronauts of shuttle mission STS-56 conducted extensive observations of the Earth's atmosphere using the ATLAS 2 payload in the spring of 1993. The SPARTAN Sun-studying satellite was deployed and then retrieved during Discovery's flight too. The crew narrates the highlights in this presentation.

 Play

STS-54: TDRS and toys
Space shuttle Endeavour lofted another Tracking and Data Relay Satellite into orbit for NASA during a January 1993 mission. An Inertial Upper Stage boosted the craft toward geosynchronous orbit. Other highlights from STS-54 included a mobility-testing spacewalk and an educational project to demonstrate the physics behind toys in space. The crew narrates this post-flight film.

 Play

STS-52: Lofting LAGEOS
The Laser Geodynamics Satellite (LAGEOS), a small ball-shaped spacecraft designed to help earthquake research by monitoring the movements of the Earth's crustal plates, was launched from space shuttle Columbia in October 1992. The crew of STS-52 narrate the highlights of the mission, which included Canadian and microgravity experiments.

 Play

Expedition 15 briefing
In advance of launching the Expedition 15 mission to the International Space Station, NASA officials preview the flight's objectives and challenges in this news briefing held March 27 at Johnson Space Center.

 Play

Expedition 14 recap
As the International Space Station's Expedition 14 winds down, officials managing the flight from Mission Control in Houston hold this retrospective briefing to talk about the mission.

 Play

Become a subscriber
More video



Star burps, then explodes
UNIVERSITY OF CALIFORNIA-BERKELEY NEWS RELEASE
Posted: April 4, 2007

BERKELEY - Tens of millions of years ago, in a galaxy far, far away, a massive star suffered a nasty double whammy.

Signs of the first shock reached Earth on Oct. 20, 2004, when the star was observed letting loose an outburst so enormous and bright that Japanese amateur astronomer Koichi Itagaki initially mistook it for a supernova. The star survived for nearly two years, however, until on Oct. 11, 2006, professional and amateur astronomers witnessed it blowing itself to smithereens as Supernova (SN) 2006jc.

"We have never observed a stellar outburst and then later seen the star explode," said University of California, Berkeley, astronomer Ryan Foley. His group studied the 2006 event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's outer layers that were ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader.

Another group, led by Stefan Immler of NASA's Goddard Space Flight Center in Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and the Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of about 10 Jupiters.

"The beautiful aspect of our SN 2006jc observations is that although they were obtained in different parts of the electromagnetic spectrum, in the optical and in X-rays, they lead to the same conclusions," said Immler.

"This event was a complete surprise," added Alex Filippenko, leader of the UC Berkeley/Keck supernova group and a member of NASA's Swift satellite team. "It opens up a fascinating new window on how some kinds of stars die."

All the observations suggest that the supernova's blast wave took only a few weeks to reach the shell of material ejected two years earlier, which did not have time to drift very far from the star. As the wave smashed into the ejecta, it heated the gas to millions of degrees, hot enough to emit copious X-rays. The Swift satellite saw the supernova continue to brighten in X-rays for 100 days, something that has never been seen before in a supernova. All supernovae previously observed in X-rays have started off bright and then quickly faded to invisibility.

"You don't need a lot of mass in the ejecta to produce a lot of X-rays," noted Immler. Swift's ability to monitor the supernova's X-ray rise and decline over six months was crucial to the mass determination by Immler's team. But he added that Chandra's sharp resolution enabled his group to resolve the supernova from a bright X-ray source that appears in the field of view of Swift's X-ray telescope.

"We could not have made this measurement without Chandra," said Immler, who will submit his team's paper next week to the Astrophysical Journal. "The synergy between Swift's fast response and its ability to observe a supernova every day for a long period, and Chandra's high spatial resolution, is leading to a lot of interesting results."

Foley and his colleagues, whose paper appears in the March 10 Astrophysical Journal Letters, propose that the star recently transitioned from a Luminous Blue Variable (LBV) star to a Wolf-Rayet star. An LBV is a massive star in a brief but unstable phase of stellar evolution. Similar to the 2004 eruption, LBVs are prone to blow off large amounts of mass in outbursts so extreme that they are frequently mistaken for supernovae, events dubbed "supernova impostors." Wolf-Rayet stars are hot, highly evolved stars that have shed their outer envelopes.

Most astronomers did not expect that a massive star would explode so soon after a major outburst, or that a Wolf-Rayet star would produce such a luminous eruption, so SN 2006jc represents a puzzle for theorists.

"It challenges some aspects of our current model of stellar evolution," said Foley. "We really don't know what caused this star to have such a large eruption so soon before it went supernova."

"SN 2006jc provides us with an important clue that LBV-style eruptions may be related to the deaths of massive stars, perhaps more closely than we used to think," added coauthor and UC Berkeley astronomer Nathan Smith. "The fact that we have no well-established theory for what actually causes these outbursts is the elephant in the living room that nobody is talking about."

SN 2006jc occurred in galaxy UGC 4904, located 77 million light years from Earth in the constellation Lynx. The supernova explosion, a peculiar variant of a Type Ib, was first sighted by Itagaki, American amateur astronomer Tim Puckett and Italian amateur astronomer Roberto Gorelli.