Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Atlantis rolls to pad
After a six-hour trip along the three-and-a-half-mile crawlerway from the Vehicle Assembly Building, space shuttle Atlantis arrives at launch pad 39A for the STS-117 mission.

 Roll starts | Pad arrival

Atlantis rollover
Space shuttle Atlantis emerges from its processing hangar at dawn February 7 for the short trip to the Vehicle Assembly Building at Kennedy Space Center's Complex 39.

 Leaving hangar | To VAB

Time-lapse movies:
 Pulling in | Sling

Microgravity laboratory
Shuttle Columbia carried the first United States Microgravity Laboratory during its summer 1992 flight to orbit. The Spacelab science expedition was the longest shuttle mission to date, thanks to the new Extended Duration Orbiter equipment flown for the first time. The crew of STS-50 narrate the highlights in this post-flight film.

 Play

Research Project: X-15
The documentary "Research Project: X-15" looks at the rocketplane program that flew to the edge of space in the effort to learn about the human ability to fly at great speeds and aircraft design to sustain such flights.

 Play

Apollo 1 service
On the 40th anniversary of the Apollo 1 fire that took the lives of astronauts Gus Grissom, Ed White and Roger Chaffee, a remembrance service was held January 27 at the Kennedy Space Center's memorial Space Mirror.

 Part 1 | Part 2

Technical look at
Project Mercury

This documentary takes a look at the technical aspects of Project Mercury, including development of the capsule and the pioneering first manned flights of America's space program.

 Play

Apollo 15: In the Mountains of the Moon
The voyage of Apollo 15 took man to the Hadley Rille area of the moon. Astronauts Dave Scott and Jim Irwin explored the region using a lunar rover, while Al Worden remained in orbit conducting observations. "Apollo 15: In the Mountains of the Moon" is a NASA film looking back at the 1971 flight.

 Play

Skylab's first 40 days
Skylab, America's first space station, began with crippling problems created by an incident during its May 1973 launch. High temperatures and low power conditions aboard the orbital workshop forced engineers to devise corrective measures quickly. Astronauts Pete Conrad, Paul Weitz and Joe Kerwin flew to the station and implemented the repairs, rescuing the spacecraft's mission. This film tells the story of Skylab's first 40 days in space.

 Play

Jupiter flyby preview
NASA's New Horizons space probe will fly past Jupiter in late February, using the giant planet's gravity as a sling-shot to bend the craft's trajectory and accelerate toward Pluto and the Kuiper Belt. Mission officials describe the science to be collected during the Jupiter encounter during this briefing.

 Play

Become a subscriber
More video



NASA's Spitzer gets first sniffs of air from alien worlds
NASA NEWS RELEASE
Posted: February 21, 2007

WASHINGTON - NASA's Spitzer Space Telescope has captured for the first time enough light from planets outside our solar system, known as exoplanets, to identify signatures of molecules in their atmospheres. The landmark achievement is a significant step toward being able to detect life on rocky exoplanets and comes years before astronomers had anticipated.


Astronomers have measured the first-ever infrared spectrum of two planets orbiting distant Sun-like stars. The planet HD 189733b, shown here in an artist's rendering, appears to be missing common molecules like water and methane. Astronomers speculate that these molecules are present but hidden behind a high layer of silicate clouds. Credit: David A. Aguilar (CfA)
 
"This is an amazing surprise," said Spitzer project scientist Michael Werner of NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. "We had no idea when we designed Spitzer that it would make such a dramatic step in characterizing exoplanets."

Spitzer, a space-based infrared telescope, obtained the detailed data, called spectra, for two different gas exoplanets: HD 189733b is 370 trillion miles away in the constellation Vulpecula, and HD 209458b is 904 trillion miles away in the constellation Pegasus.

Just as a prism disperses sunlight into a rainbow, Spitzer uses an instrument called a spectrograph to reveal a spectrum by splitting light from an object into different wavelengths. The process uncovers "fingerprints" of chemicals making up the object. The exoplanets Spitzer observed are known as "hot Jupiters" because they are gaseous like Jupiter but orbit much closer to their stars.

The data indicate the two planets are drier and cloudier than predicted. Theorists thought hot Jupiters would have lots of water in their atmospheres, but were surprised when none was found around HD 209458b or HD 189733b. In addition, one of the planets, HD 209458b, showed hints of tiny sand grains, called silicates, in its atmosphere. This could mean the water is present in the planet's atmosphere but hidden under high, dusty clouds unlike anything seen around planets in our own solar system.

"The theorists' heads were spinning when they saw the data," said Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md.

"It is virtually impossible for water, in the form of vapor, to be absent from the planet, so it must be hidden, probably by the dusty cloud layer we detected in our spectrum," he said. Richardson is lead author of a paper appearing in the Feb. 22 issue of Nature that describes a spectrum for HD 209458b.

A team led by Carl Grillmair of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena, Calif., captured the spectrum of HD 189733b. A team led by Mark R. Swain of JPL focused on the same planet in the Richardson study and came up with similar results. Grillmair's results will be published in the Astrophysical Journal Letters. Swain's findings have been submitted to the Astrophysical Journal Letters.

"With these new observations, we are refining the tools that we will one day need to find life elsewhere if it exists," said Swain. "It's sort of like a dress rehearsal."

Spitzer teased out spectra from the feeble light of the two planets through the "secondary eclipse" technique. In this method, the telescope monitors a planet as it transits, or circles behind its star, temporarily disappearing from view.

By measuring the dip in infrared light that occurred when the planets disappeared, Spitzer's spectrograph was able to obtain spectra of the planets alone. The technique will work only in infrared wavelengths, where the planet is brighter than in visible wavelengths and stands out better next to the overwhelming glare of its star.

In previous observations of HD 209458b, NASA's Hubble Space Telescope measured changes in the light from the star, not the planet, as the planet passed in front. Those observations revealed individual elements, such as sodium, oxygen, carbon and hydrogen, which bounce around the very top of the planet.

"When we first set out to make these observations, they were considered high risk because not many people thought they would work," said Grillmair. "But Spitzer has turned out to be superbly designed and more than up to the task."

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. The Spitzer Science Center at the California Institute of Technology conducts mission science operations.