Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

STS-104: ISS airlock
Space shuttle Atlantis' STS-104 mission in July 2001 delivered the $164 million Joint Airlock to the International Space Station. The module, named Quest, gave the outpost a new doorway for American and Russian spacewalks. The five Atlantis astronauts narrate the highlights of their mission in this post-flight film.

 Full Coverage

Astronaut practice
The space shuttle Discovery astronauts visit Kennedy Space Center for a practice countdown and emergency training drills. Watch some highlights from the activities.

 Full Coverage

GPS 2R-16 launch
The Boeing Delta 2 rocket launches from Cape Canaveral Nov. 17 on another mission to replenish the satellite constellation for the Global Positioning System.

 Full Coverage

Discovery on the pad
The space shuttle Discovery is rolled to pad 39B for the STS-116 launch to the space station.

 Full Coverage

Joining tank and SRBs
The space shuttle Discovery is hoisted high into the Vehicle Assembly Building and mated with its external fuel tank and solid rocket boosters.

 Hoisted | Attached

Discovery moves to VAB
Space shuttle Discovery makes an evening move October 31 from its processing hangar to the Vehicle Assembly Building for mating with an external fuel tank and twin solid rocket boosters in preparation for the STS-116 mission.

 Play

Final Hubble servicing
The objectives of the just-approved final Hubble Space Telescope servicing mission are detailed and the anticipated science from the new instruments to be installed are detailed in this briefing from Goddard Space Flight Center.

 Full Coverage

Meet Hubble astronauts
The crew for the final Hubble Space Telescope servicing mission will be led by Scott Altman, with pilot Greg C. Johnson, robot arm operator Megan McArthur and spacewalkers Andrew Feustel, Mike Good, John Grunsfeld and Mike Massimino. The astronauts meet the press in this news briefing from Johnson Space Center.

 Full Coverage

STEREO launch
The twin STEREO space observatories designed to change the way we view the sun launch from Cape Canaveral aboard a Boeing Delta 2 rocket.

 Full Coverage

Exploration update
A progress report on development of the Orion crew exploration spacecraft and the Ares launch vehicle is given during this briefing held October 18 at the Glenn Research Center in Cleveland.

 PLAY

MRO early images
Some of the initial pictures and data from NASA's Mars Reconnaissance Orbiter since the craft entered its mapping orbit around the Red Planet are presented in this news briefing held October 16 from the Jet Propulsion Laboratory.

 PLAY

Become a subscriber
More video



Integral spacecraft catches a new erupting black hole
ESA NEWS RELEASE
Posted: November 28, 2006

The European Space Agency's gamma-ray observatory, Integral, has spotted a rare kind of gamma-ray outburst. The vast explosion of energy allowed astronomers to pinpoint a possible black hole in our Galaxy.


This X-ray image was obtained by ESA's XMM-Newton satellite during the night of 22-23 September 2006, and shows the intense X-ray emission of the X-ray nova IGR J17497-2821. The X-ray nova was first spotted by ESAšs Integral gamma-ray observatory. Credits: ESA/EPIC/ISDC
 
The outburst was discovered on 17 September 2006 by staff at the Integral Science Data Centre (ISDC), Versoix, Switzerland. Inside the ISDC, astronomers constantly monitor the data coming down from Integral because they know the sky at gamma-ray wavelengths can be a swiftly changing place.

"The galactic centre is one of the most exciting regions for gamma ray astronomy because there are so many potential gamma-ray sources," says Roland Walter, an astronomer at the ISDC, and lead author of these results.

To reflect the importance of this region, Integral is now running a Key Programme, in which almost four weeks of its observing time is given over to the study of the galactic centre. This is allowing astronomers to understand the gamma-ray characteristics of the galactic centre and its celestial objects, better than ever before.

It was during one of the first of these observations that astronomers saw the outburst take place. An unexpected event of this kind is known as a 'target of opportunity'. At first they did not know what kind of eruption they had detected. Some gamma ray outbursts last for only a short period of time and so they immediately alerted other observatories around the world of the outburstšs position, allowing them to target the explosion, too. Fortunately, Integral has the capability to pinpoint the position of such a very bright event incredibly accurately.

In this case, the outburst continued to rise in brightness for a few days before beginning a gradual decline that lasted for weeks. The way the brightness of an outburst rises and falls is known to astronomers as a light curve. "It was only after a week that we could see the shape of the light curve and realised what a rare event we had observed," says Walter.

Comparing the shape of the light curve to others on file revealed that this was an eruption thought to come from a binary star system in which one component is a star like our Sun whereas the other is a black hole.

In these systems, the gravity of the black hole is ripping the Sun-like star to pieces. As the doomed star orbits the black hole, it lays down its gas in a disc, know as an accretion disc, surrounding the black hole.

Occasionally, this accretion disc becomes unstable and collapses onto the black hole, causing the kind of outburst that Integral witnessed. Astronomers are still not sure why the accretion disc should collapse like this but one thing is certain: when it does collapse, it releases thousands of times the energy than at other times.

Because such active star­black hole binaries are thought to be rare in the Galaxy, astronomers expect Integral to see such an outbursts only once every few years. That makes each and every one a precious resource for astronomers to study.

Thanks to the quick reactions of the astronomers at ISDC, observations were taken with satellites and observatories all around the world. ESA's XMM-Newton X-ray observatory, NASA's Chandra and Swift space telescopes, numerous ground-based telescopes captured the elusive radiation from this cataclysmic event. Now astronomers are hard at work, understanding what it all means.