Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Atlantis to hangar
After its safe landing to end mission STS-115, space shuttle Atlantis is towed from the Kennedy Space Center runway to hangar 1 of the Orbiter Processing Facility for post-flight deservicing and the start of preparations leading to its next mission, STS-117.

 PLAY

STS-115 landing
Space shuttle Atlantis glides to a smooth touchdown on Kennedy Space Center's Runway 33 at 6:21 a.m. to conclude the successful STS-115 mission that restarted construction of the space station.

 PLAY

Soyuz TMA-9 docking
The Russian Soyuz TMA-9 space capsule carrying the Expedition 14 resident crew and space tourist Anousheh Ansari safely docks to the International Space Station's Zvezda service module.

 PLAY

Expedition 14 launch
This extended duration movie follows the Soyuz rocket from the final countdown through arrival in orbit with the Expedition 14 crew. The video shows the three-stage rocket's ascent from Baikonur Cosmodrome and includes views of Mike Lopez-Alegria, Mikhail Tyurin and Anousheh Ansari from cameras inside the capsule.

 PLAY

Mission of Expedition 14
The voyage of Expedition 14 aboard the International Space Station is expected to see major construction activities for the outpost. Learn more about the mission in this narrated mission preview movie.

 PLAY

STS-31: Opening window to the Universe
The Hubble Space Telescope has become astronomy's crown jewel for knowledge and discovery. The great observatory was placed high above Earth following its launch aboard space shuttle Discovery on April 24, 1990. The astronauts of STS-31 recount their mission in this post-flight film presentation.

 Small | Medium | Large

STS-34: Galileo launch
The long voyage of exploration to Jupiter and its many moons by the Galileo spacecraft began on October 18, 1989 with launch from Kennedy Space Center aboard the space shuttle Atlantis. The crew of mission STS-34 tell the story of their flight to dispatch the probe -- fitted with an Inertial Upper Stage rocket motor -- during this post-flight presentation film.

 Small | Medium | Large

Atlantis on the move
Space shuttle Atlantis is transported to the cavernous Vehicle Assembly Building where the ship will be mated to the external fuel tank and twin solid rocket boosters for a late-August liftoff.

 PLAY | TIME-LAPSE

Become a subscriber
More video



HiRISE camera to take first close-up pictures of Mars
UNIVERSITY OF ARIZONA NEWS RELEASE
Posted: September 26, 2006

The most powerful camera ever to orbit Mars will get its first close look at the Red Planet on Friday.

The High-Resolution Imaging Science Experiment (HiRISE) camera flying aboard NASA's Mars Reconnaissance Orbiter (MRO) will relay its first low-altitude images to scientists at The University of Arizona beginning Friday afternoon, Sept. 29.

"It's exciting because it's the first time we'll see Mars while the spacecraft is orbiting at about 300 kilometers (roughly 190 miles) above the planet's surface," HiRISE principal investigator and UA Professor Alfred S. McEwen said.

The HiRISE camera is the most powerful telescopic camera ever sent to another planet. The camera took its first impressive test images of Mars when it was as far as 2,500 kilometers (roughly 1,600 miles) away from the planet last March, just before MRO began "aerobraking." Aerobraking involved sending the bus-sized spacecraft through Mars' upper atmosphere 426 times between early April and Aug. 30. The technique successfully lowered MRO close to its final science orbit. This maneuver would have required an extra 600 kilograms (1,300 pounds) of fuel if thrusters had been used.

The spacecraft fired six thrusters to reach final science orbit on Sept. 11. The orbit crosses near Mars' north and south poles at altitudes ranging from 250 kilometers (155 miles) to 316 kilometers (196 miles) above the surface.

The HiRISE team has been working at top speed to prepare for the low-orbit images they'll get between Sept. 29 and Oct. 6.

"What makes these next test images exciting for our team is that this time, our effective resolution (sharpness) will be 10 times better," said HiRISE Operations Center (HiROC) manager Eric Eliason. "We're going to see some tremendous detail."

The Sept. 29 - Oct. 6 observing opportunity will be the first time that MRO will use the onboard targeting algorithm and procedures that point the spacecraft at their desired targets. The check-out is designed to test all the observing modes so that there is a smooth start to the primary science phase in November.

"The north polar cap and the Phoenix Mission landing region are our big priority targets for the early science phase, and so we've included them on our targeting check-out," McEwen said.

The NASA Scout-class Phoenix Mission is an international lander mission led by UA's Peter Smith. It is slated for launch in August 2007 for a May 2008 touchdown in Mars' north polar region.

"HiRISE's best chance for photographing candidate Phoenix mission landing sites is in October and November because the sun is getting lower as northern Mars moves into fall," McEwen said. Fogs and hazes will likely degrade viewing by early 2007, he added.

Other imaging targets include about 40 other locations which sample a wide variety of landscapes. The HiRISE team plans to get its first image on Sept. 29 of Ius Chasma, a complex floor that is part of Valles Marineris, a giant canyon system far larger than Arizona's Grand Canyon.

Engineers will turn off the HiRISE camera for a solar conjunction that starts the second week of October. Solar conjunction is when the sun is aligned between Earth and Mars. It will obstruct communications with the spacecraft for about three weeks.

NASA's Mars Reconnaissance Orbiter, launched August 12, 2005, will provide more science data than all previous Mars missions combined. Among its many objectives is a search for evidence that water persisted on the surface of Mars for a long period of time. Other Mars missions have shown that water flowed across the surface in Mars' history. But whether water was ever around long enough to provide a habitat for life remains a mystery.

The HiRISE team uses ISIS-3 software developed and maintained by the U.S.G.S.-Flagstaff for processing its images at HiROC. HiROC is located in the C. P. Sonett Space Sciences Building, 1541 E. University Blvd, on the UA campus.

The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems is the prime contractor for the project and built the spacecraft. The HiRISE camera was designed, assembled and tested at Ball Aerospace and Technology Corp. in Boulder, Co.