Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

STS-51G: Space truck
A seven-person crew featuring payload specialists from France and Saudi Arabia flew aboard the June 1985 mission of space shuttle Discovery. They narrate the highlights of STS-51G in this post-flight film. Three communications satellites -- for Mexico, the Arab countries and the U.S. -- were launched from the payload bay. And the SPARTAN 1 astrophysics spacecraft was deployed from the shuttle's robot arm for a two-day freeflight to make its science observations before being retrieved and returned to Earth.

 Small | Medium | Large

STS-51B: Monkeys, bubbles and auroras
The flight of Spacelab 3 aboard Challenger in April/May 1985 was a week-long scientific research mission using a laboratory tucked in the shuttle's payload bay. Experiments focused on material and fluid behaviors in weightlessness, plus observations of monkeys in the lab. The crew also watched amazing auroral displays over Earth. This post-flight crew film shows the highlights of STS-51B and includes remarkable views out the shuttle cockpit window during launch showing the Chesapeake Bay, New York City and Cape Cod as Challenger soared up the eastern seaboard.

 Small | Medium | Large

STS-51D: Flyswatter spacewalk
Discovery launched April 12, 1985 on the STS-51D mission. A U.S. military communications satellite, known as Leasat 3, failed to activate after its deployment from the payload bay. That set the stage for a spacewalk -- the shuttle program's first unplanned EVA -- to attach handcrafted "Flyswatter" objects on the shuttle robotic arm to hit a timing switch on the satellite. The rescue attempt did not succeed. Upon landing at Kennedy Space Center, Discovery blew a tire. The crew, including Senator Jake Garn of Utah, narrate this post-flight film of highlights from the week-long mission.

 Small | Medium | Large

Fuel tank update
NASA managers hold this news conference April 28 to give an update on plans for the next space shuttle mission, the ongoing external fuel tank testing and debates over further modifications.

 Dial-up | Broadband

CALIPSO and CloudSat
The Boeing Delta 2 rocket carrying the CALIPSO and CloudSat atmospheric research spacecraft lifts off at 3:02 a.m. local time April 28 from Vandenberg Air Force Base, California.

 Full coverage

Tank meets SRBs
Inside the Vehicle Assembly Building, the external fuel tank for the STS-121 space shuttle mission is hoisted into position for attachment with the twin solid rocket boosters atop a mobile launch platform. The tank, ET-119, will carry the liquid oxygen and liquid hydrogen to feed Discovery's three main engines during launch.

 Play video

Discovery payload bay
In preparation for space shuttle Discovery's departure from its Orbiter Processing Facility hangar for rollover to the Vehicle Assembly Building and mating with the tank and boosters, the ship's 60-foot long payload bay doors are swung shut.

 Play video

Become a subscriber
More video



Venus Express spacecraft has reached final orbit
EUROPEAN SPACE AGENCY NEWS RELEASE
Posted: May 9, 2006

Less than one month after insertion into orbit, and after sixteen loops around the planet Venus, ESA's Venus Express spacecraft has reached its final operational orbit on 7 May 2006.

Already at 21:49 CEST on 6th May, when the spacecraft communicated to Earth through ESA's ground station at New Norcia (Australia), the Venus Express ground control team at ESA's European Spacecraft Operations Centre (ESOC) in Darmstadt (Germany) received advanced confirmation that final orbit was to be successfully achieved about 18 hours later.

Launched on 9 November 2005, Venus Express arrived to destination on 11 April 2006, after a five-month interplanetary journey to the inner solar system. The initial orbit -- or 'capture orbit' -- was an ellipse ranging from 330,000 kilometres at its furthest point from Venus surface (apocentre) to less than 400 kilometres at its closest (pericentre).

As of the 9-day capture orbit, Venus Express had to perform a series of further manoeuvres to gradually reduce the apocentre and the pericentre altitudes over the planet. This was achieved by means of the spacecraft main engine -- which had to be fired twice during this period (on 20 and 23 April 2006) - and through the banks of Venus Express' thrusters -- ignited five times (on 15, 26 and 30 April, 3 and 6 May 2006).

"Firing at apocentre allows the spacecraft to control the altitude of the next pericentre, while firing at the pericentre controls the altitude of the following apocentre," says Andrea Accomazzo, Spacecraft Operations Manager at ESOC. "It is through this series of operations that we reached the final orbit last Sunday, about one orbital revolution after the last 'pericentre change manoeuvre' on Saturday 6 May".

Venus Express entered its target orbit at apocentre on 7 May 2006 at 15:31 (CEST), when the spacecraft was at 151 million kilometres from Earth. Now the spacecraft is running on an ellipse substantially closer to the planet than during the initial orbit. The orbit now ranges between 66,000 and 250 kilometres over the Venus and it is polar. The pericentre is located almost above the North pole (80 deg North latitude), and it takes 24 hours for the spacecraft to travel around the planet.

"This is the orbit designed to perform the best possible observations of Venus, given the scientific objectives of the mission. These include global observations of the Venusian atmosphere, of the surface characteristics and of the interaction of the planetary environment with the solar wind," says Hakan Svedhem, Venus Express Project Scientist. "It allows detailed high resolution observations near pericentre and the North Pole, and it lets us study the very little explored region around the South Pole for long durations at a medium scale," he concluded.

Until beginning of June, Venus Express will continue its "orbit commissioning Phase," started on 22 April this year.

"The spacecraft instruments are now being switched on one by one for detailed checking, which we will continue until mid May. Then we will operate them all together or in groups," said Don McCoy, Venus Express Project Manager. "This allows simultaneous observations of phenomena to be tested, to be ready when Venus Express' nominal science phase begins on 4 June 2006," he concluded.