Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

STS-51D: Flyswatter spacewalk
Discovery launched April 12, 1985 on the STS-51D mission. A U.S. military communications satellite, known as Leasat 3, failed to activate after its deployment from the payload bay. That set the stage for a spacewalk -- the shuttle program's first unplanned EVA -- to attach handcrafted "Flyswatter" objects on the shuttle robotic arm to hit a timing switch on the satellite. The rescue attempt did not succeed. Upon landing at Kennedy Space Center, Discovery blew a tire. The crew, including Senator Jake Garn of Utah, narrate this post-flight film of highlights from the week-long mission.

 Small | Medium | Large

Fuel tank update
NASA managers hold this news conference April 28 to give an update on plans for the next space shuttle mission, the ongoing external fuel tank testing and debates over further modifications.

 Dial-up | Broadband

CALIPSO and CloudSat
The Boeing Delta 2 rocket carrying the CALIPSO and CloudSat atmospheric research spacecraft lifts off at 3:02 a.m. local time April 28 from Vandenberg Air Force Base, California.

 Full coverage

Tank meets SRBs
Inside the Vehicle Assembly Building, the external fuel tank for the STS-121 space shuttle mission is hoisted into position for attachment with the twin solid rocket boosters atop a mobile launch platform. The tank, ET-119, will carry the liquid oxygen and liquid hydrogen to feed Discovery's three main engines during launch.

 Play video

Discovery payload bay
In preparation for space shuttle Discovery's departure from its Orbiter Processing Facility hangar for rollover to the Vehicle Assembly Building and mating with the tank and boosters, the ship's 60-foot long payload bay doors are swung shut.

 Play video

Progress docking
Take a virtual ride aboard the Russian Progress 21P cargo freighter as it docks with the International Space Station. This movie captures the final approach and successful linkup from a camera on the Progress craft's nose.

 Rendezvous | Docking

Atlas 5 launches ASTRA
The Lockheed Martin Atlas 5 rocket blasts off with the European ASTRA 1KR television broadcast satellite right on time April 20 from Complex 41 at Cape Canaveral Air Force Station.

 Play video

STS-51A: Daring mission
Soon after the Palapa and Westar communications satellites got stranded in worthless orbits following their deployment from shuttle Challenger in February 1984, planners began devising a rescue mission to launch that November. The STS-51A flight of shuttle Discovery is arguably one of the most daring and complex space missions ever attempted. The crew successfully launched two communications satellites and then retrieved Palapa and Westar during extraordinary spacewalks using jet-propelled backpacks and hands-on muscle power. Watch the amazing flight unfold with narration by the crew in this post-flight film.

 Small | Medium | Large

Become a subscriber
More video



Closest-spaced giant black hole pair found
NATIONAL RADIO ASTRONOMY OBSERVATORY NEWS RELEASE
Posted: May 1, 2006

Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found the closest pair of supermassive black holes ever discovered in the Universe -- a duo of monsters that together are more than 150 million times more massive than the Sun and closer together than the Earth and the bright star Vega.

"These two giant black holes are only about 24 light-years apart, and that's more than 100 times closer than any pair found before," said Cristina Rodriguez, of the University of New Mexico (UNM) and Simon Bolivar University in Venezuela. Black holes are concentrations of mass with gravity so strong that not even light can escape them.

The black hole pair is in the center of a galaxy called 0402+379, some 750 million light-years from Earth. Astronomers presume that each of the supermassive black holes was once at the core of a separate galaxy, then the two galaxies collided, leaving the black holes orbiting each other. The black holes orbit each other about once every 150,000 years, the scientists say.

"If two black holes like these were to collide, that event would create the type of strong gravitational waves that physicists hope to detect with instruments now under construction," said Gregory Taylor, of UNM. The physicists will need to wait, though: the astronomers calculate that the black holes in 0402+379 won't collide for about a billion billion years.

"There are some things that might speed that up a little bit," Taylor remarked.

An earlier VLBA study of 0402+379, an elliptical galaxy, showed the pair of radio-wave-emitting objects near its core. Further studies using the VLBA and the Hobby-Eberly Telescope in Texas, revealed that the pair of objects is indeed a pair of supermassive black holes.

"We needed the ultra-sharp radio 'vision' of the VLBA, particularly at the high radio frequencies of 22 and 43 GigaHertz, to get the detail needed to show that those objects are a pair of black holes," Taylor said. The VLBA is a continent-wide system of ten radio-telescope antennas. It provides the greatest ability to see fine detail, called resolving power, of any telescope in astronomy.

"Astronomers have thought for a long time that close pairs of black holes should result from galaxy collisions," Rodriguez said. Still, finding them has proven difficult. Until now, the closest confirmed pairs of supermassive black holes were at least 4,500 light-years apart. Pairs of smaller black holes, each only a few times the mass of the Sun, have been found in our own Milky Way Galaxy, but 0402+379 harbors the pair of supermassive black holes that are the closest to each other yet found.

Galactic collisions are common throughout the Universe, and astronomers think that the binary pairs of supermassive black holes that result can have important effects on the subsequent evolution of the galaxies. In a number of predicted scenarios, such giant pairs of black holes will themselves collide, sending gravitational waves out through the Universe. Such gravitational waves could be detected with a proposed joint space mission between NASA and the European Space Agency, the Laser Interferometer Space Antenna.

"Such black-hole collisions undoubtedly are important processes, and we need to understand them. Finding ever-closer pairs of supermassive black holes is the first step in that process. Even finding one such system has dramatically changed our expectations, and informed us about what to look for," Taylor said. Taylor and his collaborators are currently using the VLBA to carry out the largest survey of compact radio-emitting objects ever undertaken, in the hope of finding more such pairs.

Rodriguez and Taylor worked with Robert Zavala of the U.S. Naval Observatory, Allison Peck of the SubMillimeter Array of the Harvard- Smithsonian Center for Astrophysics, Lindsey Pollack of the University of California at Santa Cruz, and Roger Romani of Stanford University. Their results have been accepted for publication in the Astrophysical Journal.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.