Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

STS-26: Back in space
The space shuttle program was grounded for 32 months in the painful wake of the 1986 Challenger accident. Americans finally returned to space in September 1988 when shuttle Discovery safely launched for its mission to deploy a NASA communications satellite. Enjoy this post-flight presentation narrated by the astronauts as they show movies and tell the story of the STS-26 mission.

 Small | Medium | Large

Amazing STS-51I flight
Imagine a space shuttle mission in which the astronaut crew launched two commercial and one military communications spacecraft, then conducted a pair of incredible spacewalks to recover, fix and redeploy a satellite that malfunctioned just four months earlier. The rescue mission was a success, starting with an astronaut making a catch of the spinning satellite with just his gloved-hand. Enjoy this post-flight presentation narrated by the astronauts as they tell the story of shuttle Discovery's August 1985 mission known as STS-51I.

 Small | Medium | Large

Discovery's debut
In our continuing look back at the classic days of the space shuttle program, today we show the STS-41D post-flight presentation by the mission's astronauts. The crew narrates this film of home movies and mission highlights from space shuttle Discovery's maiden voyage in August 1984. STS-41D deployed a remarkable three communications satellites -- a new record high -- from Discovery's payload bay, extended and tested a 100-foot solar array wing and even knocked free an icicle from the shuttle's side using the robot arm.

 Small | Medium | Large

"Ride of Your Life"
As the title aptly describes, this movie straps you aboard the flight deck for the thunderous liftoff, the re-entry and safe landing of a space shuttle mission. The movie features the rarely heard intercom communications between the crewmembers, including pilot Jim Halsell assisting commander Bob Cabana during the landing.

 Play video

Message from Apollo 8
On Christmas Eve in 1968, a live television broadcast from Apollo 8 offered this message of hope to the people of Earth. The famous transmission occurred as the astronauts orbited the Moon.

 Play video

ISS receives supply ship
The International Space Station receives its 20th Russian Progress cargo ship, bringing the outpost's two-man Expedition 12 crew a delivery of fresh food, clothes, equipment and special holiday gifts just in time for Christmas.

 Short | Full length

Rendezvous with ISS
This movie features highlights of the December 23 rendezvous between the Russian Progress 20P vessel and the International Space Station. The footage comes from a camera mounted on the supply ship's nose.

 Play video

Become a subscriber
More video



Star reveals more evidence for new kind of black hole
NASA-GSFC NEWS RELEASE
Posted: January 5, 2006

Scientists using NASA's Rossi X-ray Timing Explorer have found a doomed star orbiting what appears to be a medium-sized black hole - a theorized "in-between" category of black hole that has eluded confirmation and frustrated scientists for more than a decade.

With the discovery of the star and its orbital period, scientists are now one step away from measuring the mass of such a black hole, a step which would help verify its existence. The star's period and location already fit into the main theory of how these black holes could form.

A team led by Prof. Philip Kaaret of the University of Iowa, Iowa City, announced these results today in Science Express. The results will also appear in the Jan. 27 issue of Science.

"We caught this otherwise ordinary star in a unique stage in its evolution, toward the end of its life when it has bloated into a red giant phase," said Kaaret. "As a result, gas from the star is spilling into the black hole, causing the whole region to light up. This is a well-studied region of the sky, and we spotted the star with a little luck and a lot of perseverance."

A black hole is an object so dense and with a gravitational force so intense that nothing, not even light, can escape its pull once within its boundary. A black hole region becomes visible when matter falls toward it and heats to high temperatures. This light is emitted before the matter crosses the border, called the event horizon.

Our galaxy is filled with millions of stellar-mass black holes, each with the mass of a few suns. These form from the collapse of very massive stars. Most galaxies possess at their core a supermassive black hole, containing the mass of millions to billions of suns confined to a region no larger than our solar system. Scientists do not know how these form, but it likely entails the collapse of enormous quantities of primordial gas.

"In the past decade, several satellites have found evidence of a new class of black holes, which could be between 100 and 10,000 solar masses," said Dr. Jean Swank, Rossi Explorer project scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md. "There has been debate about the masses and how these black holes would form. Rossi has provided major new insight."

These suspected mid-mass black holes are called ultra-luminous X-ray objects because they are bright sources of X-rays. In fact, most of these black hole mass estimates have been based solely on a calculation of how strong a gravitational pull is needed to produce light of a given intensity.

Kaaret's group at the University of Iowa, which includes Prof. Cornelia Lang and Melanie Simet, an undergraduate, made a measurement that can be used in the equation to directly calculate mass. Using straightforward Newtonian physics, scientists can calculate an object's mass once they know an orbital period and velocity of smaller objects rotating around it.

"We found a rise and fall in X-ray light every 62 days, likely caused by the orbit of the companion star around the black hole," said Simet. “The velocity will be hard to determine, however, because the star is located in such a dust-obscured area. This makes it hard for optical and infrared telescopes to observe the star and make velocity calculations. Yet for now, knowing just the orbital period is very revealing.”

The suspected mid-mass black hole, known as M82 X-1, is a well-studied ultra-luminous X-ray object in a nearby star cluster containing about a million stars packed into a region only about 100 light years across. A leading theory proposes that a multitude of star collisions over a short period in a crowded region will create a short-lived gigantic star that collapses into a 1,000-solar-mass black hole. The cluster near M82 X-1 has a high-enough density to form such a black hole. No normal companion could provide enough fuel to make M82 X-1 shine so brightly. But the 62-day orbital period implies that the companion must have a very low density. This fits the scenario of a bloated super-giant star losing mass at a rate high enough to fuel M82 X-1.

"With this discovery of the orbital period, we now have a consistent picture of the whole evolution of a mid-mass black hole binary," said Kaaret. "It was formed in a 'super' star cluster; the black hole then captured a companion star; the companion star evolved to the giant stage; and we now see it as an extremely luminous X-ray source because the companion star has expanded and is feeding the black hole."