Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Space Thanksgiving
International Space Station commander Bill McArthur and flight engineer Valery Tokarev mark the Thanksgiving holiday in orbit during this downlinked message.

 Play video

Soyuz on the move
Expedition 12 Soyuz commander Valery Tokarev and station commander Bill McArthur temporarily leave the International Space Station. They undocked their Soyuz capsule from the Pirs module and then redocked the craft to the nearby Zarya module. The move clears Pirs for use as the airlock for an upcoming Russian-based spacewalk.

 Play video

Pluto New Horizons
Check out NASA's Pluto-bound New Horizons spacecraft undergoing thermal blanket installation inside the cleanroom at Kennedy Space Center's Payload Hazardous Servicing Facility in preparation for launch in January from the Cape.

 Play video

Mountains of creation
A new image from NASA's Spitzer Space Telescope reveals billowing mountains of dust ablaze with the fires of stellar youth. The majestic infrared view from Spitzer resembles the iconic "Pillars of Creation" picture taken of the Eagle Nebula in visible light by NASA's Hubble Space Telescope.

 Play video

Space history: STS-51A
This week marks the anniversary of arguably the most daring and complex space shuttle mission. The astronauts successfully launched two satellites and then recovered two others during extraordinary spacewalks by astronauts using jet-propelled backpacks and pure muscle power.

 Play video

Space station EVA
Commander Bill McArthur and flight engineer Valery Tokarev conduct a 5 1/2-hour spacewalk outside the International Space Station, installing a TV camera, doing repair chores and jettisoning a failed science probe.

 Play video

The Earth from space
Return to flight space shuttle commander Eileen Collins narrates an interesting slide show featuring some favorite photographs of Earth taken during her previous shuttle missions.

 Play video

Griffin testifies
NASA Administrator Mike Griffin goes before the U.S. House of Representative's Science Committee to provide an update on the moon-Mars exploration program, the future of the space shuttle and space station, possible servicing of Hubble, cost overruns on the James Webb Space Telescope and the agency's aeronautics research.

 Play video

Become a subscriber
More video



Sharp vision reveals intimacy of stars
EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE
Posted: November 26, 2005

Using the newly installed AMBER instrument on ESO's Very Large Telescope Interferometer, which combines the light from two or three 8.2-m Unit Telescopes thereby amounting to observe with a telescope of 40 to 90 metres in diameter, two international teams of astronomers observed with unprecedented detail the environment of two stars. One is a young, still-forming star and the new results provide useful information on the conditions leading to the creation of planets. The other is on the contrary a star entering the latest stages of its life. The astronomers found, in both cases, evidence for a surrounding disc.


Credit: ESO
 
A first group of astronomers, led by Fabien Malbet from the Laboratoire d'Astrophysique de Grenoble, France, studied the young 10- solar mass stellar object MWC 297, which is still in the very early stage of its life.

"This scientific breakthrough opens the doors to an especially detailed scrutiny of the very close environment of young stars and will bring us invaluable knowledge on how planets form", says Malbet.

It is amazing to see the amount of details the astronomers could achieve while observing an object located more than 800 light-years away and hidden by a large amount of gas and dust. They found the object to be surrounded by a proto-planetary disc extending to about the size of our Solar System, but truncated in his inner part until about half the distance between the Earth and the Sun. Moreover, the scientists found the object to be surrounded by an outflowing wind, the velocity of which increased by a factor 9, from about 70 km/s near the disc to 600 km/s in the polar regions.

"The reason why the inner part of the disc should be truncated is not clear", adds Malbet. "This raises new questions on the physics of the environment of intermediate mass young stars."

The astronomers now plan to perform observations with AMBER with three telescopes to measure departure from symmetry of the material around MWC 297.

Another international team of astronomers has just done this kind of observations to study the surroundings of a star entering the last stages of its life. In a world premiere, they combined with AMBER the light of three 8.2-m Unit Telescopes of the VLT, gaining unsurpassed knowledge on a B[e] supergiant, a star that is more luminous than our Sun by more than a factor 10,000. This supergiant star is located ten times further away than MCW 297 at more than 8,000 light-years.

The astronomers made the observations to investigate the crucial questions concerning the origin, geometry, and physical structure of the envelope surrounding the star.

These unique observations have allowed the scientists to see structures on scale as small as 1.8 thousandths of an arcsecond – that is the same as distinguishing between the headlights of a car from about 230,000 km away, or 2/3 of the distance from the Earth to the Moon!

Armando Domiciano de Souza, from the MPI fur Radioastronomie in Bonn (Germany) and his colleagues made also use of the MIDI instrument on the VLTI, using two Unit Telescopes. Using their full dataset, they found the circumstellar envelope around the supergiant to be non- spherical, most probably because the star is also surrounded by an equatorial disc made of hot dust and a strong polar wind.

"These observations are really opening the doors for a new era of understanding of these complex and intriguing objects", says Domiciano de Souza.

"Such results could be achieved only due to the spectral resolution as well as spatial resolution that AMBER offers. There isn't any similar instrument in the world." concludes Fabien Malbet, who is also the AMBER Project Scientist.