|
||||
![]() |
![]() Pluto meets triple star EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE Posted: September 2, 2002 A rare celestial phenomenon involving the distant planet Pluto has occurred twice within the past month. Seen from the Earth, this planet moved in front of two different stars on July 20 and August 21, respectively, providing observers at various observatories in South America and in the Pacific area with a long awaited and most welcome opportunity to learn more about tenuous atmosphere of that cold planet. On the first date, a series of very sharp images of a small sky field with Pluto and the star was obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory. With a diameter of about 2300 km, Pluto is about six times smaller than the Earth. Like our own planet, it possesses a relatively large moon, Charon, measuring 1200 km across and circling Pluto at a distance of about 19,600 km once every 6.4 days. In fact, because of the similarity of the two bodies, the Pluto-Charon system is often referred to as a double planet.
Stellar occultations One such occultation event was observed in 1988, and two others were expected to occur in 2002, according to predictions published in 2000 by American astronomers Steve W. McDonald and James L. Elliot (Massachussetts Institute of Technology [MIT], Cambridge, USA). Further refinements provided by other observers later showed that the first event would be visible from South America on July 20, 2002, while a second one on August 21 was expected to be observable in the Pacific basin, from the western coast of North America down to Hawaii and New Zealand. A stellar occultation provides a useful opportunity to study the planetary atmosphere, by means of accurate photometric measurements of the dimming of the stellar light, as the planet moves in front of the star. The observed variation of the light intensity and colour provides crucial information about the structure (atmospheric layers) and composition of different gases and aerosols. The July 20 occultation In May 2002, preparatory observations showed that star to be double, with the brighter component of the system ("P126 A") being likely to be occulted by Pluto, as seen from South America. However, because of the duplicity, the predictions of exactly where the shadow of Pluto would sweep the ground were uncertain by about 0.1 arcsec in the sky, corresponding to more than 2000 km on the ground. The NACO images The NACO image shown was obtained in infrared light (in the K-band at wavelength 2.2 micron) on July 20, 2002, some 45 min before Pluto's shadow passed north of Paranal. The orientation is such that North is up, and East is left. The small sky field measures about 7 x 7 arcsec2. The pixel size is 0.027 arcsec, and the achieved image sharpness corresponds to the theoretical limit (the diffraction limit) with a telescope of this size and at this wavelength (0.07 arcsec).
A closer inspection of the original image shows that the disk of Pluto (with a diameter of 0.107 arscec and covering 16 NACO pixels) is (barely) resolved. Many images were taken by NACO prior to the occultation. They will allow to retrace the precise motion of Pluto relative to P126 A, thereby improving the mapping of the motion of Pluto's shadow on the ground. This is important in order to apply the correct geometrical circumstances for the interpretation of the photometric observations. A first evaluation of the NACO data indicates that the Paranal site "missed" the upper layers of Pluto's atmosphere by a mere 200 km or so - this is equivalent to no more than one hundredth of an arcsec as projected on the sky. Appendix: Stellar occultations and Pluto's atmosphere Pluto's atmosphere was first detected on August 19, 1985, during a stellar occultation observed from Israel and then studied in more detail from Australia and from the Kuiper Airborne Observatory (KAO) during another such event on July 9, 1988. However, Pluto's atmosphere is still not well understood. It appears to be mostly composed of a dominant gas of atomic weight 28, probably molecular nitrogen (N2). Near-IR solar reflection spectra have since shown a small presence of methane (CH4), probably at a level of about 1% relative to nitrogen. The 1988 occultation clearly revealed two different layers in Pluto's atmosphere, a rather smooth and isothermal outer part, and a more complex one near the planet's surface, with the possible presence of an inversion layer (in which the temperature increases with altitude) or possibly haze of photochemical origin. The present observations aimed at discriminating between the current theoretical models of Pluto's atmosphere by means of detailed measurements of the changing intensity and colour of the stellar light, as the star is seen through progressively lower layers of the planet's atmosphere. Another important issue is the question of whether Pluto's atmosphere has
changed since 1988. In the intervening 14 years, the planet has moved away
from the Sun in its elliptic orbit, whereby there has been a change in the
insolation (solar flux) of about 6%. This effect might possibly have caused
changes in the surface temperature and in the overall atmospheric structure
of Pluto. However, any firm conclusions will have to await a complete and
careful evaluation of all available observations.
|
![]() |
![]() |
![]() |
Hubble![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||