Brown dwarf spotted close to star
NATIONAL OPTICAL ASTRONOMY OBSERVATORY NEWS RELEASE
Posted: May 22, 2002

  Dwarf This discovery image from the Gemini Observatory represents the closest brown dwarf companion ever directly imaged around a star (named LHS 2397a). Credit: Gemini Observatory/Melanie Freed, Laird Close, Nick Siegler University of Arizona/ Hokupa'a-QUIRC image, University of Hawaii, IfA
 
Astronomers using adaptive optics technology on the Gemini North Telescope have observed a brown dwarf orbiting a low-mass star at a distance comparable to just three times the distance between the Earth and Sun. This is the closest separation distance ever found for this type of binary system using direct imaging.

The record-breaking find is just one of a dozen lightweight binary systems observed in the study. Together, they provide a new perspective on the formation of stellar systems and how smaller bodies in the Universe (including large planets) might form.

"By using Gemini's advanced imaging capabilities, we were able to clearly resolve this binary pair where the distance between the brown dwarf and its parent star is only about twice the distance of Mars from the Sun," said team member Melanie Freed, a graduate student at the University of Arizona in Tucson. With an estimated mass of 38-70 times the mass of Jupiter, the newly identified brown dwarf is located just three times the Sun-Earth distance (or 3.0 Astronomical Units) from its parent star. The star, known as LHS 2397a, is only 46 light-years from Earth. The motion of this object in the sky indicates that it is an old, very low-mass star.

The previous imaging record for the closest distance between a brown dwarf and its parent (a much brighter, Sun-like star) was almost five times greater at 14 AU. One Astronomical Unit (AU) equals the average distance between the Earth and the Sun or about 150 million kilometers (93 million miles).

Often portrayed as "failed stars," brown dwarfs are bigger than giant planets like Jupiter, but their individual masses are less than 8% of the Sun's mass (75 Jupiter masses), so they are not massive enough to shine like a star. Brown dwarfs are best viewed in the infrared because surface heat is released as they slowly contract. The detection of brown dwarf companions within 3 AU of another star is an important step toward imaging massive planets around other stars.

This University of Arizona team led by Dr. Laird Close used the Gemini North Telescope to detect eleven other low mass companions, suggesting that these low-mass binary pairs may be quite common. The discovery of so many low- mass pairs was a surprise, given the argument that most very low-mass stars and brown dwarfs were thought to be solo objects wandering though space alone after being ejected out of their stellar nurseries during the star formation process.

"We have completed the first adaptive optics-based survey of stars with about 1/10th of the Sun's mass, and we found nature does not discriminate against low-mass stars when it comes to making tight binary pairs," said Close, an assistant professor of astronomy at the University of Arizona. Dr. Close is the lead author on a paper presented today at the Brown Dwarfs International Astronomical Union Symposium in Kona, Hawaii, and he is the principal investigator of the low-mass star survey.

The team looked at 64 low-mass stars (originally identified by John Gizis of the University of Delaware) that appeared to be solo stars in the lower resolution images from the 2MASS all-sky infrared survey. Once the team used adaptive optics on Gemini to make images that were ten times sharper, twelve of these stars were revealed to have close companions. Surprisingly, Close's team found that the separation distances between the low mass stars and their companions were significantly less than expected.

Distances
This illustration shows the relatively small separations of the 12 companions found around low-mass stars that were studied in the Gemini Observatory survey by Laird Close et al. Credit: Gemini Observatory/Artwork by Jon Lomberg
 
"We find companions to low-mass stars are typically only 4 AU from their primary stars, this is surprisingly close together," said team member Nick Siegler, a University of Arizona graduate student. "More massive binaries have typical separations closer to 30 AU, and many binaries are much wider than this." The new Gemini observations, Close said, "imply strongly that low-mass stars do not have companions that are far from their primaries." Similar results had been found previously by a team led by Dr. Eduardo L. Martin of the University of Hawaii Institute for Astronomy in a survey of 34 very low-mass stars and brown dwarfs in the Pleiades cluster carried out with the Hubble Space Telescope. These two surveys together clearly demonstrate that there is an intriguing dearth of brown dwarfs at separations larger than 20 AU from very low-mass stars and other brown dwarfs.

The team projects that one out of every five low-mass stars has a companion with a separation in the range (3-200 AU). Within this separation range, astronomers have observed a similar frequency of more massive stellar companions around larger Sun-like stars.

Taken as a whole, these new results suggest that (contrary to theory) low-mass binaries may form in a process similar to that of more massive binaries. Indeed, this finding adds to growing evidence from other groups that the percentage of binary systems is similar for bodies spanning the range from one solar mass to as little as 0.05 solar masses (or 52 times Jupiter's mass). For example, a group led by Neill Reid of the Space Telescope Science Institute and the University of Pennsylvania has come to a similar conclusion with a smaller sample of 20 even lower- mass stars and brown dwarfs observed with the Hubble Space Telescope.

The fact that low-mass stars have any low-mass brown dwarf companions inside 5 AU is also surprising because the exact opposite is true around Sun- like stars. Very few Sun-like stars have brown dwarf companions inside this distance, according to radial velocity studies. "This lack of brown dwarf companions within 5 AU of Sun-like stars has been called the 'brown dwarf desert'," Close noted. "However, we see there is likely no brown dwarf desert around low-mass stars."

Glare
The main difficulty in detecting smaller bodies in orbit around stars is the central star is often so bright that its glare hides the dim light from the much fainter companion. By focusing on low-mass central stars, this study was able to detect much closer and smaller companions due to the reduced glare from the central star as illustrated in this diagram. Credit: Gemini Observatory/Artwork by Jon Lomberg
 
These results form important constraints for theorists working to understand how the mass of a star affects the mass and separation distance of the companions that form with it. "Any accurate model of star and planet formation must reproduce these observations," Close said.

These observations were possible only because of the combination of the University of Hawaii's uniquely sensitive Hokupa'a adaptive optics imaging system and the technical performance of the Gemini telescopes. The Hokupa'a system sensitivity is due to the curvature wavefront sensing concept developed by Dr. Francois Roddier. Adaptive optics is an increasingly crucial technology that eliminates most of the "blurring" caused by the turbulence in the Earth's atmosphere (i.e., the twinkling of the stars). It does this by rapidly adjusting the shape of a special, smaller flexible mirror to match local turbulence, based on real-time feedback to the mirror's support system from observations of the low- mass star. Hokupa'a can count individual photons (particles of light) and so can sharpen accurately even very faint (i.e., low-mass) stars.

The near-infrared adaptive optics images made by the 8-meter Gemini telescope in this survey were twice as sharp as those that can be made at the same wavelengths by the Earth-orbiting, 2.4-meter Hubble Space Telescope. The only ground-based survey of its kind, this work required five nights over one year with the Hokupa'a system at Gemini North.

It is important to note that the distances used here are as measured on the sky. The real orbital separations may be slightly larger once the full orbit of these binaries is known in the future.

Other science team members include James Liebert (Steward Observatory, University of Arizona), Wolfgang Brandner (European Southern Observatory, Garching, Germany), and Eduardo Martin and Dan Potter (Institute for Astronomy, University of Hawaii).

The observations reported here are part of an ongoing survey. Initial results from the first 20 low-mass stars of the survey have been published in the March 1, 2002, issue of The Astrophysical Journal Letters.

Sizes
Astronomers have found many types of objects in orbit around stars. These range from other full-sized stars like our sun (binary star systems) to Jupiter sized planets (never directly imaged but inferred from radial-velocity spectroscopy). The relative sizes of these various types of bodies are shown above for comparison. Even though a brown dwarf can be similar in diameter to a Jupiter sized planet, brown dwarfs are 13-75 times more massive and they can appear on the order of 100-1,000,000 times brighter than a Jupiter sized planet at infrared wavelengths where they are studied with telescopes. Credit: Gemini Observatory/Artwork by Jon Lomberg
 
This survey was supported in part by the U.S. Air Force Office of Scientific Research and the University of Arizona's Steward Observatory. Hokupa'a is supported by the University of Hawaii Adaptive Optics Group and the National Science Foundation.

The Gemini Observatory is an international collaboration that has built two identical 8-meter telescopes. The telescopes are located at Mauna Kea, Hawaii (Gemini North) and Cerro Pach=F3n in central Chile (Gemini South), and hence provide full coverage of both hemispheres of the sky. Both telescopes incorporate new technologies that allow large, relatively thin mirrors under active control to collect and focus both optical and infrared radiation from space.

The Gemini Observatory provides the astronomical communities in each partner country with state-of-the-art astronomical facilities that allocate observing time in proportion to each country's contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the UK Particle Physics and Astronomy Research Council (PPARC), the Canadian National Research Council (NRC), the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), the Australian Research Council (ARC), the Argentinean Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) and the Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). The Observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

DVD is here!
The first in a series of space DVDs is now available from the Astronomy Now Store. Relive shuttle Columbia's March flight to refurbish the Hubble Space Telescope in spectacular DVD quality.
 U.S. STORE
 U.K. & WORLDWIDE STORE

The Apollo 14 Complete Downlink DVD set (5 discs) contains all the available television downlink footage from the Apollo 14 mission. A two-disc edited version is also available.
 U.S. STORE
 U.K. & WORLDWIDE STORE

NEW! Mission Report
Apollo 11 - The NASA Mission Reports Vol. 3 is the first comprehensive study of man's first mission to another world is revealed in all of its startling complexity. Includes DVD!
 U.S. STORE
 WORLDWIDE STORE

An insider's view of how Apollo flight controllers operated and just what they faced when events were crucial.
 Choose your store:
U.S.

John Glenn Mission Patch

Free shipping to U.S. addresses!

The historic first orbital flight by an American is marked by this commemorative patch for John Glenn and Friendship 7.
 U.S. STORE
 WORLDWIDE STORE

Final Shuttle Mission Patch

Free shipping to U.S. addresses!

The crew emblem for the final space shuttle mission is available in our store. Get this piece of history!
 U.S. STORE
 WORLDWIDE STORE

Celebrate the shuttle program

Free shipping to U.S. addresses!

This special commemorative patch marks the retirement of NASA's Space Shuttle Program. Available in our store!
 U.S. STORE
 WORLDWIDE STORE

Anniversary Shuttle Patch

Free shipping to U.S. addresses!

This embroidered patch commemorates the 30th anniversary of the Space Shuttle Program. The design features the space shuttle Columbia's historic maiden flight of April 12, 1981.
 U.S. STORE
 WORLDWIDE STORE

Mercury anniversary

Free shipping to U.S. addresses!


Celebrate the 50th anniversary of Alan Shephard's historic Mercury mission with this collectors' item, the official commemorative embroidered patch.
 U.S. STORE
 WORLDWIDE STORE

Fallen Heroes Patch Collection
The official patches from Apollo 1, the shuttle Challenger and Columbia crews are available in the store.
 U.S. STORE
 WORLDWIDE STORE

Columbia Report
A reproduction of the official accident investigation report into the loss of the space shuttle Columbia and its crew of seven.
 Choose your store:
U.S. - U.K. - E.U. - Worldwide

Mars Panorama

DISCOUNTED! This 360 degree image was taken by the Mars Pathfinder, which landed on the Red Planet in July 1997. The Sojourner Rover is visible in the image.
 Choose your store:
U.S.

Apollo 11 Mission Report
Apollo 11 - The NASA Mission Reports Vol. 3 is the first comprehensive study of man's first mission to another world is revealed in all of its startling complexity. Includes DVD!
 Choose your store:
U.S. - U.K. - E.U. - Worldwide

Rocket DVD
If you've ever watched a launch from Kennedy Space Center, Cape Canaveral, Vandenberg Air Force Base or even Kodiak Island Alaska, there's no better way to describe what you witnessed than with this DVD.
 Choose your store:
U.S. - U.K. - E.U. - Worldwide

Apollo 11 special patch
Special collectors' patch marking the 35th anniversary of the historic Apollo 11 moon landing is now available.
 Choose your store:
U.S. - U.K. - E.U. - Worldwide

Inside Apollo mission control
An insider's view of how Apollo flight controllers operated and just what they faced when events were crucial.
 Choose your store:
U.S.

The ultimate Apollo 11 DVD
This exceptional chronicle of the historic Apollo 11 lunar landing mission features new digital transfers of film and television coverage unmatched by any other.
 Choose your store:
U.S. - U.K. - E.U. - Worldwide

Next ISS crew
Own a little piece of history with this official patch for the International Space Station's Expedition 11 crew. We'll ship yours today!
 Choose your store:
U.S.

Hubble Posters
Stunning posters featuring images from the Hubble Space Telescope and world-renowned astrophotographer David Malin are now available from the Astronomy Now Store.
 U.S. STORE
 U.K. & WORLDWIDE STORE

Get e-mail updates
Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop (privacy note: your e-mail address will not be used for any other purpose).
Enter your e-mail address:

INDEX | PLUS | NEWS ARCHIVE | LAUNCH SCHEDULE
ASTRONOMY NOW | STORE

ADVERTISE

© 2014 Spaceflight Now Inc.